Prime Γ– Radical and Radical TT – Ideal in Ternary Γ- Semirings

K. Sri Latha
Research Scholar, Department of Mathematics,
Rayalaseema University, Kurnool-518 002, India.
lathajay111@gmail.com

D. Madhusudhana Rao
Associate Professor, Department of Mathematics,
V.S.R & N.V.R. College, Tenali-522 202, India.
dmrmaths@gmail.com

G. Shobha Latha
Professor, Department of Mathematics,
Sri Krishnadeveraya University, Anantapur-515003, India.

Abstract—In this paper we investigate some important properties of prime Γ- radical of an TT- ideal in a ternary Γ– semiring. On some special properties of prime Γ–radical, radical TT-ideal are also obtain in the case when the ideals are k-TT-ideals and h-TT-ideals.

Keywords: Ternary Γ-semiring, radicalTT-ideal, radical k-TT-ideal, radical h-TT– ideal

I. Introduction:

The notion of ternary Γ– semiring was introduced by M. SajaniLavanyaand D. MadhusudhanaRao in [5, 6] in the year 2015, as a natural generalization of ternary Γ– ring and Γ-semiring. The notion of prime radical of an ideal is important to the theory of semigroups, semirings as well as Γ-semigroups etc. In this paper we study prime Γ- radicals in ternary Γ- semiring as mentioned in the abstract.

II. Preliminaries:

Definition 2.1:[5]: The non empty sets T and Γ together with a binary operation called addition and ternary multiplication denoted by juxtaposition is said to be a ternary Γ– semiring if T and Γ be two additive commutative semigroups satisfying the following conditions.

(i) $[(x_{1}\alpha x_{2}, x_{3}, x_{4}, x_{5})] = [(x_{1}\alpha x_{2}x_{3}, x_{4}, x_{5})] = [(x_{1}x_{2}\alpha x_{3}, x_{4}, x_{5})]$

(ii) $[(x_{1}, x_{2}\alpha x_{3}, x_{4}, x_{5})] = [(x_{1}\alpha x_{2}, x_{3}, x_{4}, x_{5})]$

(iii) $[(x_{1}, x_{2}, x_{3}, x_{4}, x_{5})] = [(x_{1}, x_{2}, x_{3}, x_{4}, x_{5})]$

(iv) $[(x_{1}, x_{2}, x_{3}, x_{4}, x_{5})] = [(x_{1}, x_{2}, x_{3}, x_{4}, x_{5})]

for all $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in T$ and $\alpha, \beta, \gamma, \delta \in \Gamma$.

Definition 2.2:[5]: An element 0 in ternary Γ– semiring T such that $0 + a = a$ and $0aflb = a0flb = aabl = 0$ for all $a, b \in T, \alpha, \beta \in \Gamma$. Then 0 is called the 0 – element or simply zero element of the ternary Γ– semiring T.

Definition 2.3:[5]: An element a of a ternary Γ– semiring T is said to be an identity provided $aafla = tafla = aafla = t$ for all $t \in T, \alpha, \beta \in \Gamma$.

Definition 2.4:[5]: A ternary Γ– semiring T is said to be a commutative provided $aaflb = bflca = cflba = baflb = aclfa = aocflb$ for all $a, b, c \in T, \alpha, \beta \in \Gamma$.

Definition 2.5:[5]: An additive subsemigroup S of T is said to be a TT– sub semiring if $xflya \in A$ for all $x, y \in T, \alpha, \beta \in \Gamma$.

Definition 2.6:[5]: An additive subsemigroup A of T is said to be a leftTT– ideal of T if $xflya \in A$ for all $x \in T, a, y \in T, \alpha, \beta \in \Gamma$.

Definition 2.7:[5]: An additive subsemigroup A of T is said to be a lateralTT– ideal of T if $xflya \in A$ for all $x \in T, a, y \in T, \alpha, \beta \in \Gamma$.

Definition 2.8:[5]: An additive subsemigroup A of T is said to be a rightTT– ideal of T if $xflya \in A$ for all $x \in T, a, y \in T, \alpha, \beta \in \Gamma$.

Definition 2.9:[5]: An additive subsemigroup A of T is said to be a TT– ideal of T if $xflya \in A$ and $x, y \in T, \alpha, \beta \in \Gamma$.

Definition 2.10: A TT- ideal A of a ternary Γ- semiring T is said to be a k-TT-ideal if for $x, y \in T$, $x + y \in A$ and $x \in A$ then $y \in A$.

Definition 2.11: A TT- ideal A of a ternary Γ- semiring T is said to be a h-TT-ideal if for $x \in T$, and for $a_{1}, a_{2} \in A$, $x + a_{1} \alpha, t \in T$ implies $x \in A$.

Definition 2.12:[5]: A proper TT- ideal P of a ternary Γ- semiring T is said to be a prime TT–ideal of T if for any three TT- ideals A, B, C of T, $A \Gamma B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$ or $C \subseteq P$.

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org
Definition 2.13 [6]: A proper TT'-ideal Q of T is said to be a semiprime TT'-ideal of T if ATΓA⊆Q implies A⊆Q for any TT'-ideal A of T.

Definition 2.14: Annonempty subset M of a ternary Γ-semiring T is said to be an m-system if for each a, b, c∈M, there exists elements x_1,x_2,x_3,x_4 of T such that aΓx_1ΓΓΓΓx_2ΓΓΓΓc⊆M or aΓx_1ΓΓΓGamma

III. Prime Γ – Radical of a TT'-ideal:

Definition 3.1: Let T be a ternary Γ-semiring and A be a TT'-ideal of T. Then prime Γ – Radical of A is denoted by rad(A) is defined to be the intersection of all prime TT'-ideals of T each of which contains A.

Definition 3.2: A TT'-ideal N in a ternary Γ-semiring T is said to be a nilpotent TT'-ideal if (NΓ)^n = 0 for some natural number n.

Theorem 3.3: In a ternary Γ-semiring T the following conditions are equivalent.

1. P is a prime TT'-ideal of T.
2. aΓΓΓGamma

Theorem 3.7: Let A be a TT'-ideal in a ternary Γ-semiring T then rad(A) = {x∈T/every m-system in T which contains has a non empty intersection with A}

Theorem 3.8: Suppose T is a commutative ternary Γ-semiring and M is a m-system in T containing a. Then there exist an integer n≥0 such that (aa)^n a∈A for a∈Γ.
Note: In this paper we simply called a prime radical TT-ideal to be a radical TT-ideal.

Theorem 3.12: If A is a TT-ideal in a ternary Γ-semiring T then the following are equivalent.
1) rad(A) = A
2) (aa)\(^n\) \(\in\) A implies \(\in\) A for some odd natural number n.

Proof: (1) \(\Rightarrow\) (2): Let (aa)\(^n\) \(\in\) A then by theorem 3.9, a \(\in\) rad(A) = A.
(2) \(\Rightarrow\) (1): We know that A \(\subseteq\) rad(A). Let a \(\in\) rad(A). By theorem 3.7, there exist an odd natural number n such that (aa)\(^n\) \(\in\) A. Hence by hypothesis a \(\in\) A. Hence rad(A) \(\subseteq\) A. Therefore rad(A) = A.

Definition 3.13: A k-TT-ideal in a ternary Γ-semiring T is said to be a radical k-TT-ideal provided it is a radical TT-ideal.

Definition 3.14: A h-TT-ideal in a ternary Γ-semiring T which also is a radical TT-ideal is called a radical h-TT-ideal.

Theorem 3.15: Let A be a radical k-TT-ideal of a commutative ternary Γ-semiring T and P, Q be any two subsets of T then S = \{x \in T | xΓPQ \(\subseteq\) A\} is a radical k-TT-ideal.

Proof: S is clearly a TT-ideal of T. Now, let x + y \(\in\) S and x \(\in\) S, y \(\in\) T. Then (x + y)p,q \(\in\) A and xΓPQ \(\subseteq\) A for all p \(\in\) P and for all q \(\in\) Q. So yΓPQ \(\subseteq\) A for all p \(\in\) P and for all q \(\in\) Q as A is a TT-ideal in T. Hence y \(\in\) S.

Consequently, S is a k-TT-ideal in T. Let (xΓ)\(^n\) \(\in\) S for some odd natural number n then (xΓ)\(^n\) \(\in\) xΓPQ \(\subseteq\) A for all p \(\in\) P and for all q \(\in\) Q which implies ((xΓ)\(^n\))^\(\in\) x(ΓP)^\(n\) \(\in\) A for all p \(\in\) P and for all q \(\in\) Q as A is a TT-ideal in T. Therefore (xΓ)\(^n\) \(\in\) xΓPQ \(\subseteq\) A for all p \(\in\) P and for all q \(\in\) Q. So xΓPQ \(\subseteq\) A for all p \(\in\) P and for all q \(\in\) Q as A is a radical TT-ideal. Thus xΓPQ \(\subseteq\) A and so x \(\in\) S. Hence by theorem 3.12, S is also a radical TT-ideal.

Theorem 3.16: Let A be a radical h-TT-ideal of a commutative ternary Γ-semiring T and P, Q are two subsets of T then S = \{x \in T | xΓPQ \(\subseteq\) A\} is a radical h-TT-ideal.

Proof: ClearlyS is an TT-ideal of T. Now, let x \(\in\) T and x + a, a = at \(\in\) T for t \(\in\) T and for a \(\in\) A \(\subseteq\) S. Then(x + a)t \(\in\) TΓPQ = (a,t)ΓPQ for all p \(\in\) P and for all q \(\in\) Q. Therefore xΓPQ + aΓPQ \(\subseteq\) TΓPQ = aΓPQ + ΓPQ where p \(\in\) P \(\subseteq\) T and aΓPQ \(\subseteq\) A, aΓPQ \(\subseteq\) Q. So aΓPQ \(\subseteq\) A for all p \(\in\) P and for all q \(\in\) Q as A is a h-TT-ideal of T. Hence x \(\in\) S.

Consequently, S is a h-TT-ideal. The proof of the part that S is a radical TT-ideal is similar to that in theorem 3.15.

7) By condition (1), A \(\subseteq\) rad(A). So by condition (3), rad(A) \(\subseteq\) rad[rad(A)]. Let a \(\in\) rad[rad(A)] and \{P, _\} be the family of prime TT-ideals of T such that A \(\subseteq\) P, for all i \(\in\) \(\Delta\). Then by definition rad(A) \(\subseteq\) P, for all i \(\in\) \(\Delta\). Hence rad[rad(A)] \(\subseteq\) P. Therefore a \(\in\) P, for all i \(\in\) \(\Delta\) implies that a \(\in\) rad(A). Therefore rad[rad(A)] = rad(A).

Theorem 3.17: In a ternary Γ-semiring intersection of any collection of radical TT-ideals is again a radical TT-ideal.

Definition 3.18: Suppose T is a ternary Γ-semiring with a ternary Γ-subsemiring A and a TT-ideal I, P = I\(\cap\)A is a TT-ideal. If there is another TT-ideal I such that I \(\subseteq\) J and P = J\(\cap\)A, then we say I can be enlarged to be aTT-ideal in T which also contracts to P.

Theorem 3.19: Let A be an m – system and N be a TT-ideal of a ternary Γ-semiring T such that N\(\cap\)A = \(\emptyset\) then there exist a maximal TT-ideal M of T containing A such that M\(\cap\)A = \(\emptyset\) moreover M is a prime TT-ideal of T.

Theorem 3.20: Let T be a commutative ternary Γ-semiring and A be a ternary Γ-subsemiring of T. Let I be a radical TT-ideal of T such that aaβc \(\in\) I, a, c \(\in\) A, b \(\in\) T, a, β ∈ Γ imply either a \(\in\) I or b \(\in\) I or c \(\in\) I. Then P = I\(\cap\)A is a prime TT-ideal in A. Also I can be expressed as an intersection of prime TT-ideals each os which contracts to P.

Proof: Let a, b \(\in\) A, a, b \(\in\) Γ such that aaβc \(\in\) P. Then aaβc \(\in\) I. Therefore by hypothesis either a \(\in\) I or b \(\in\) I or c \(\in\) I.Hence either a \(\in\) P or b \(\in\) P or c \(\in\) P. So P becomes a prime TT-ideal corollary 3.4.

IV. Conclusion:
In this paper mainly we studied about radical TT-ideals in ternary Γ-semirings.

ACKNOWLEDGMENT
The authors would like to thank the experts who have contributed towards preparation and development of the paper and the authors also wish to express their sincere thanks to the...
referees for the valuable suggestions which lead to an improvement of this paper.

REFERENCES

