Design and Simulation of Photovoltaic System in Matlab using Simulink

Mr. Dharmendra kumar Singh, Mr. Mahendra Kumar Pradhan
MAT'S UNIVERSITY
Email: amerrupas@gmail.com

Abstract: In recent years, the solar power energy is the economical and independent source of power. The grid connected power supplies plays an important role in developing countries such as India, Pakistan, Bangladesh etc. In developed countries, it is very useful because it is connected with power grid. But in developing countries, the government does not supply power to the rural areas through power grid. So in this case, independent solar power is very useful. In this paper, we design and simulate the photovoltaic system using Matlab Simulink. The step-by-step design is explained, and the output data is analyzed. After analysis of the results, it is found that the solar power system is very useful and economical if we consider it for a long time (about 20 years).

Keywords: Solar Cell, Matlab, Solar PV system, Photovoltaic Energy, PV array

1. Introduction
The regular research from the past decades on photovoltaic energy as energy sources in various applications has increasing day to day. It is renewable, clean, and sustainable energy which makes it suitable to use as an alternative energy source. The power user customer and government focus has shifted towards obtaining energy from renewable resources rather than from finite sources of fuels and coals. Photovoltaic model consists of number of photovoltaic cells that are connected in series and parallel to generate electricity from solar energy. Solar PV system can be used ranging from a few hundred watts to MW capacity. This means that solar power energy system can provide energy for individual houses to small scale industries. India or developing countries, places where grid connection is not possible or not till date supply energy from grid make use of PV system with the backup batteries which can also provide electricity in night time when sunlight is not available. The modelling and simulation of photovoltaic modules helps in better understanding in terms of the behaviour and characteristics. The behaviour of photovoltaic module varies in environmental condition. [1-10]

2. Methodology
2.1 Solar System
The most abundant fuel source in the area of renewable energy is the sun. Solar panels produce electricity through individual photovoltaic cells. This form of energy collection is viable in regions of the world where the sunlight is plentiful, and can be used in isolated regions or on houses to supplement the rising cost of electricity from a power grid. To convert the sun’s energy, the cells capture photons to create free electrons that flow across the cells to produce usable current (Penick & Louk 2007). The efficiency of the panel is determined by the semiconductor material that the cells are made from as well as the process used to construct the cells. [1-3]

2.2 Photovoltaic Energy
Photovoltaic (PV) cells are made by semiconductor technology to convert solar light energy into electrical energy in the form of Direct Current (DC). The most preferable semiconductor material for manufacturing a PV cell is silicon. PV cell consists of a junction of p and n-doped silicon. A schematic diagram of the cross section view of solar cell (Hille et al 1995) is as shown in Figure(1). When the sunlight strikes the junction, the energy in the photons is converted into electrical energy. Since the PV cells do not have any movable parts a longer life with less maintenance can be achieved.

Figure(1) Principle of generating electricity from sunlight

One of the major drawbacks of the PV conversion system is its huge capital cost and its poor efficiency only in the range of 13% to 16%. But the induction of new technologies in the manufacturing of solar cells, the production cost is reduced significantly. To generate more power, a group of cells called as PV modules or PV array as shown in Figure 1.3 (Mohammad. H. Rashid 2007) can be connected in series or in parallel to generate more power. [1-4]
The generated DC power can be used directly to a DC load or it can be inverted into Alternating Current (AC) power to supply an AC load or utility grid.

2.3 Equation and parameters of PV system.

The basic equation from the theory of semiconductors that mathematically describes the I–V characteristic of the ideal PV cell is

$$I = I_{\text{pv cell}} - I_0,\text{cell} \left[\exp \left(\frac{qV}{\alpha KT} \right) - 1 \right]$$ \hspace{1cm} (1)

The basic equation 1 of the elementary PV cell does not represent the I–V characteristic of a practical PV array. Cells connected in parallel increase the current and cells connected in series provide greater output voltages. Practical arrays are composed of several connected PV cells and the observation of the characteristics at the terminals of the PV array requires the inclusion of additional parameters to the basic which is mentioned in equation 2 as follows

$$I = I_{\text{pv}} - I_0 \left[\exp \left(\frac{V + R_s I}{V_t \alpha} \right) - 1 \right] - \frac{V + R_s I}{R_p}$$ \hspace{1cm} (2)

All PV array datasheets bring basically the nominal open-circuit voltage ($V_{oc,n}$), the nominal short-circuit current ($I_{sc,n}$), the voltage at the MPP (V_{mp}), the current at the MPP (I_{mp}), the open-circuit voltage/temperature coefficient (K_V), the short circuit current/temperature coefficient (K_i), and the maximum experimental peak output power ($P_{max,e}$). This information is always provided with reference to the nominal condition or standard test conditions (STC’s) of temperature and solar irradiation. The practical PV device has a series resistance R_s whose influence is stronger when the device operates in the voltage source region and a parallel resistance R_p with stronger influence in the current source region of operation. The assumption $I_{sc} \sim I_{pv}$ is generally used in the modelling of PV devices because in practical devices the series resistance is low and the parallel resistance is high. The diode saturation current is given by

$$I_0 = \frac{I_{sc,n} + k_i \Delta T}{\exp \left(\frac{V_{sc,n} + k_V \Delta T}{\alpha V_t} \right) - 1}$$ \hspace{1cm} (3)

The saturation current I_0 is strongly dependent on the temperature so that the net effect of the temperature is the linear variation of the open-circuit voltage according to the practical voltage/temperature coefficient. The equation of the PV current is given in equation 4.

$$I_{\text{pv}} = (I_{\text{pv}, n} + K_I \Delta T) \frac{G}{G_n}$$ \hspace{1cm} (4)

The relation between R_s and R_p, the only unknowns of inequation 2 may be found by making $P_{\text{max,m}} = P_{\text{max,e}}$ and solving the resulting equation for R_s is given in equation 5 and 6.

$$P_{\text{max,m}} = V_{mp} \left\{ I_{\text{pv}} - I_0 \left[\exp \left(\frac{q}{kT} \frac{V_{mp} + R_s I_{mp}}{N_s \alpha} \right) - 1 \right] - \frac{V_{mp} R_s I_{mp}}{R_p} \right\}$$ \hspace{1cm} (5)

$$R_{s}\text{min} = \frac{V_{mp} + I_{mp} R_s}{N_s \alpha \frac{V_{mp} + I_{mp} R_s}{kT} + V_{mp} q - P_{\text{max,e}}}$$ \hspace{1cm} (6)

$$I_{\text{pv, n}} = \frac{R_p + R_s}{R_p} I_{sc,n}$$ \hspace{1cm} (7)

The initial value of R_s may be zero. The initial value of R_p may be given by

$$R_{p,\text{min}} = \frac{V_{mp}}{I_{sc,n} - I_{mp}} - \frac{V_{oc,n} - V_{mp}}{I_{mp}}$$ \hspace{1cm} (8)

Equation 8 determines the minimum value of R_p, which is the slope of the line segment between the short-circuit and the maximum-power remarkable points. Although R_p is still unknown, it surely is greater than $R_{p,\text{min}}$ and this is a good initial guess.[5-13]
2.4 Designing of Solar Panel

2.4.1 The mathematical model or circuit model of an ideal photovoltaic module is shown in below figure (3).

![Figure (3) Basic SIMULINK model of equivalent PV module](image)

2.4.2 The simulink model for calculation of \(I_m = I_{PV} - I_d (N_{SS} \times N_{PP} \text{ modules}) \) is shown in figure(4)

![Figure (4) The simulink model for calculation of \(I_m = I_{PV} - I_d (N_{SS} \times N_{PP} \text{ modules}) \)](image)

2.4.3 The Simulink model for the calculation of \(I_{PV} \) (single module) is shown in figure(5)

![Figure (5) The simulink model for the calculation of \(I_{PV} \) (single module)](image)

2.4.4 The simulink model for the calculation of \(I_{O} \) (single module) is shown in figure(6)

![Figure (6) The simulink model for the calculation of \(I_{O} \) (single module)](image)

2.4.5 The proposed PV module is shown in figure (7)

![Figure (7) Proposed PV module SIMULINK](image)
2.4.6 The proposed PV array simulink model is shown in below figure 8

Figure (8) Proposed PV array simulink model

3. Simulation Results

3.1. Simulation of PV Module

PV module is modelled by using Matlab Simulink. After the simulation of proposed PV model in matlab for different values of parameter we have find the result shown in figure 9, 10,11,12 Simulation results for the proposed PV module based on P-V and I-V characteristics under different solar radiations are shown in Figure 9 & 10. Simulation results for the proposed PV module based on P-V and I-V characteristics for different values of cell temperatures are shown in Figure 11 & 12.
3.2. Simulation of PV Array

An array of 6 PV modules has been constructed. The PV modules were interconnected in series. The PV array model was simulated similarly to the model of the PV module and the results obtained are shown in Figure 13, 14, 15 & 16.
4. Conclusion

Step by step method in modelling PV module was developed using Matlab Simulink and presented. This method also verified by theoretical calculations based on the equations involved for PV module. This paper presents a clear understanding on the behaviour and parameters involved in PV module especially on I-V and P-V characteristics. The result of the simulation shows that the change in different parameter changes the result of I-V and P-V values. Simulation results for the proposed PV module based on P-V and I-V characteristics under different solar radiations and different values of cell temperatures are shown.

Reference

