
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 232 – 235

232
IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

Barriers to Refactoring: Issues and Solutions

Zeba Khanam,

College of Computing and Informatics,

Saudi Electronic University,

KSA

Abstract:- Refactoring mechanism is commonly used in software development. Though Object oriented programming promotes ease in

designing reusable software but the long coded methods makes it unreadable and enhances the complexity of the methods. The common code

defects are associated with large classes and methods. To ease up the code comprehension Extract method, Extract class serves as a comfortable

option to reduce the disorganization and duplication of the code to produce more fine grained methods and classes. Though refactoring serves as

an important mechanism to improve the software quality whether performed manually or in an automated way with the help of tools or IDEs but

there are umpteen cases where refactoring could lead to deterrent effect. This paper intends to explore the various problems and barriers

associated with refactoring and specifically while extracting the code (extract method, extract class, extract interface) and their solutions.

__*****___

1. Introduction

The decision to refactor may not be difficult but to refactor

in the best possible way without erroneous manipulation of

the code with some known benefits is what is more

symbolic . While extraction of code fragments looks like a

simple computation and well supported by IDEs such as

Eclipse, intelliJ IDEA etc, however identification of code

for extraction can sometimes be an arduous task. Sometimes

the code extraction whether it might be to a method or a

class varies with different programming paradigms and

languages aswell. For example the mechanism in a

completely procedural language differs from OOP whereas

the extraction methodology in Aspect oriented programming

could be a completely different phenomena, the Component

Based Development on the other hand engages in extraction

of reusable components[10][11][15]. The problem that

consumes most of the time is in picking the most

appropriate refactoring candidate. The research [1] depicts

the problem of finding the most suitable refactoring

candidate for long methods written in Java. The approach

adopted investigates for the most appropriate refactoring

candidates and ranks them using a scoring function that aims

to improve readability and reduce code complexity. The

mechanism applied is length and nesting reduction as

complexity indicators. Many researchers have worked on

the Extract method refactoring [1][2][12][13], the work in

[1] generates a static analysis tool to find extract method

opportunities based on variable references.This tool creates

an intermediate representation of the method for the tree-

map visualization tool.

Extract Method is generally applied in combination with

other core refactorings such as Move Method and Extract

Class [7]. These refactoring are usually done after the

extract method is already applied. This paper primarily

focuses on problems associated with code extraction.

Refactoring techniques tend to impact different quality

aspects of software programs such as cohesion, complexity

and readability. The extract method refactoring has been

dealt in various ways such as extracting fragments to aspects

using Aspect oriented programming, identifying the

refactoring opportunities automatically, or extraction of the

code chunks as a separate method that collaborate to

provide a specific functionality.[2][3][5][6][15]

 Most of the researchers are of the view that proper test

suites could be the best solution and should be in place, but

the author [8] states that semantic preconditions checking

could be an effective solution. A recent study [16]

investigated the reasons effecting the developer’s

refactoring decision whether its driven due to design related

issues or any other. However, the results prove that the

decision to refactor or not are not dependent on design

considerations.

2. Issues and Solutions Associated with Refactoring

The gains associated with refactoring are usually in making

the code look simpler and with a better design that would be

easier for the other developers to comprehend. Whether the

refactoring is performed manually or in an automated way

they tend to have some shortcomings associated with some

of them that might be exposed immediately or in the long

run. In this section we intend to highlight a few problems

with a few of well known commonly performed refactorings

and their likely solutions.

2.1 Not using a Refactoring Tool

Very often the most common cause of refactoring defect is

due to its manual implementation and not the code, due to

the unavailability of appropriate tool. The refactoring like

changing method signatures, renaming variables and

methods, moving variables between the classes etc may lead

to unidentified bugs and harm the entire code eventually.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 232 – 235

233
IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

For example, changing the name of a local variable may

sound a simple task, but if there is an existent class level

variable with the same name then the new name would hide

it. Refactoring tools on the other hand take all these

warnings into account, while doing it manually maybe

misleading. Therefore the solution is to initiate your

refactorings with a suitable tool.

2.2 Refactoring not accompanied with unit tests

 Unit testing forms a necessary practice of the refactoring

process and if not performed after refactoring may lead to

the obvious danger of introducing undetected defects in the

refactored code. Thus validating for changes is a difficult

task. However, another consideration that the developers

may usually be casual about is that the legacy code could

already have an undetected error that is not known until the

refactoring is done. The developer’s response would be to

assume that the changes introduced in the code, might have

introduced the bug.

 That would lead to a search through the latest changes made

to find the error, though the actual problem lies in the code

that remains untouched.

So the best option is to first create a set of unit tests for the

existing code so that if there are any defects prior to the

refactoring they may get detected before incorporation of

any change. The test driven development that is gaining

momentum too is based on the same principal [6] that

whenever a new addition is done to the code, the developers

have to design the test cases for the requirements and the

code is supposed to pass it and refactored for a better design.

Sometimes TDD is used to improve the design or debug the

legacy code.

2.3 Refactoring the code bound with many external

interfaces

 The code that interacts with many external interfaces can be

complicated and error prone for refactoring, especially for

loosely typed or string parameters. For example refactoring

the system can lead to many changes and may accidentally

introduce some defects. A particular data that was

unexpected by the receiver system when sent by the external

system had been working earlier but as was unexpected by

the receiver may not work after the changes. These errors

are hard to detect and finding them during the development

cycle is almost not possible. They can be detected only

during a full QA cycle or during the production process.

The optimal solution for this kind of problem is to record all

the data sets transmitted between the internal code and the

external interfaces for a specified duration. Then perform

refactoring of the system and design tests for the system

using the captured data. The test results would establish if

the system is capable of handling the live traffic correctly or

not.

2.4 Change method signature

The change method signature refactoring deals with

changing the method name, changing the parameter names

or the return types, adding or removing a new parameter, or

reordering the parameters, changing the visibility scope etc.

But the manipulation of method signatures can lead to code

defects not identifiable easily, especially for methods where

all the parameters are of the same time. For example a

method that has two strings as parameters, but due to some

logical reason the developer changes the order of the

parameters, now since both are of the same type this

situation may create ambiguity because any other developer

cannot realize the change and by any chance if the developer

forgets to change the order in the method calls, the system

won’t project it as an error.

Therefore to avoid any ambiguity its best to be meticulous

in it and method signature manipulation should be

preferably automated to avoid any such risk.

3. One of the currently suggested solutions to ensure safer

refactorings is to encode preconditions in dynamic analysis

[8]. Though static analysis can effectively check syntactic

preconditions, but the semantic preconditions checking is a

comparatively complex task in languages like Java where

static analysis is hardly able to analyze what executable path

will be followed.

In experiment settings it has been shown that developers can

have a low understanding of the implications of a

refactoring and the preconditions posed on the source code,

and that warnings or previews can sometimes be ignored

[9], leading to unsafe refactorings.

2.5 Problems while extracting interfaces and

superclasses

Improving the code while refactoring often involves

generating new interfaces to the class but the manual

procedure is quite tiresome as writing the method signatures

and other properties could be common cause of errors and

code defects, an appropriate automation in this regard is

available. But it would be a great idea if the extracted

interface would scan through the other classes and prompt

the user about the classes that would likely implement the

same interface, it would save on a lot of manual effort.

Another concern is while extracting a super class from a

very useful class by creating a base class by extracting the

most common code. But in Java sometimes the problem

may arise that though we have created a base class from this

very useful class, we want this class to be again reused in

http://searchsoa.techtarget.com/quiz/Test-your-knowledge-on-code-refactoring
http://searchsoa.techtarget.com/quiz/Test-your-knowledge-on-code-refactoring
http://searchsoa.techtarget.com/quiz/Test-your-knowledge-on-code-refactoring
http://searchsoftwarequality.techtarget.com/news/2240217271/Twitter-uses-code-refactoring-to-reduce-risk-and-improve-testing
http://searchsoftwarequality.techtarget.com/news/2240217271/Twitter-uses-code-refactoring-to-reduce-risk-and-improve-testing
http://searchsoftwarequality.techtarget.com/news/2240217271/Twitter-uses-code-refactoring-to-reduce-risk-and-improve-testing
http://searchsoftwarequality.techtarget.com/tip/Quality-assurance-QA-and-testings-role-in-requirements

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 232 – 235

234
IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

another base class but that won’t be possible as the class is

already having a parent class and multiple inheritance is not

allowed in Java.

2.6 Language independent Refactorings

State of the art suggests that the majority of the refactorings

proposed are paradigm or language dependent. But there are

a variety softwares that constitute the code belonging two

different paradigms such as the AspectJ code embedded in

Java [17][20].There are refactorings performed to modify

the code from OOP to AOP or from procedural language to

AOP(such as C to AspectC or Objective C). Therefore an

important consideration with the tool enabled refactorings

would be to support cross paradigm refactorings. The

research done in this area[18][19] works on implementing

the refactorings that are not specific to a language or

paradigm and can be applied without bothering about the

compatibility.

2.7 Refactoring for Design Problems may not be a very

good option

Refactoring may be of good use in improving the design of

the code but to naively believe that it can completely change

the design and deep rooted mistakes and would produce an

upfront design would be an over assumption. Since

recognizing the defects and gaps take a long time in the real

world as by the time one starts to refactor the actual smell a

lot of defects have already piled after application of various

patches and continuous corrections, the code evolves into a

different shapes. Thats probably when the developer realizes

that the software needs probably a different architecture or

different sets of abstraction.

Though it may not always be a bad idea as a lot exploration

and research has been made on problems in software, wrong

applications of designing principles and patterns [14].

Around 25 structural design smells, their roles and their

respective refactorings are discussed.

Conclusion

As a developer involved in striving to write the best code,

usage of refactoring as a tool for improvement of the code is

a common phenomena. As a curious developer one may

wish to experiment with the different refactorings available

in the popular catalogs of Fowler and Kerievsky.Though the

catalogs are quite precise in descriptions but given the

varied nature of software with different paradigms and

languages the catalogs or the existing information

sometimes falls short many a times n describing the

refactorings as per the requirements. When practically

implementing few of these refactorings the developers

usually experience a lot of ambiguity: as the tools available

may differ on implementation details or precondition checks

that makes it more time consuming and sometimes leads to

futile attempt. So this paper has highlighted a few of the

popular or common issues that are associated with various

refactorings and proposes the technique to be adopted in

such cases.

Also the tools that are used for the purpose of refactoring

don’t generally have any option of assessing the refactorings

and predicting their likely outcome or result on the

refactored code.If this property somehow could be added in

a tool a lot of ambiguity surrounding when and how to

refactor the code could be solved.

References

[1] Kaya, Mehmet, "Identifying Extract Class and Extract

Method Refactoring Opportunities Through Analysis of

Variable Declarations and Uses" (2014). Dissertations -

ALL. Paper 53.

[2] Nikolaos Tsantalis and Alexander Chatzigeorgiou ,

“Identification of extract method refactoring

opportunities for the decomposition of methods”, Journal

of Systems and SoftwareVolume 84, Issue 10, October

2011, Pages 1757-1782

[3] Sofia Charalampidou; Apostolos

Ampatzoglou; Alexander Chatzigeorgiou; Antonios

Gkortzis; Paris Avgeriou, “Identifying Extract Method

Refactoring Opportunities Based on Functional

Relevance”, IEEE Transactions on Software

Engineering (Volume: 43, Issue: 10, Oct. 1 2017)

[4] Roman Haas1 and Benjamin Hummel,Deriving Extract

Method Refactoring Suggestions for Long Methods.

Software Quality Days 2016 (SQD’16), 2016.

[5] Rizvi. S and Khanam Z “Assessment of the Impact of

Aspect Oriented Programming on Refactoring

Procedural Software”. Computers and Mathematics in

Automation and Materials Science,

MATHIMA24,Cambridge,USA.2014

[6] Zeba Khanam and Mohammed Najeeb Ahsan,

“Evaluating the Effectiveness of Test Driven

Development: Advantages and Pitfalls”(2017).

International Journal of Applied Engineering Research

ISSN 0973-4562 Volume 12, Number 18 (2017) pp.

7705-7716

[7] Nikolaos Tsantalis and Alexander Chatzigeorgiou,

“Identification of Extract Method Refactoring

Opportunities” in 13th European Conference on

Software Maintenance and Reengineering, 2009.

CSMR '09.

[8] Anna Maria Eilertsen,”Making Software Refactorings

Safer”,Master Thesis,June ,2016.

[9] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P.

Bailey, and R. E. Johnson. Use, disuse, and misuse of

automated refactorings. In 34th International Conference

on Software Engineering (ICSE 2012), pages 233–243.

IEEE, 2012.

[10] Rizvi, S., Khanam, Z. “A methodology for refactoring

legacy code.” In: International Conference on Electronics

http://www.sciencedirect.com/science/article/pii/S0164121211001191#!
http://www.sciencedirect.com/science/article/pii/S0164121211001191#!
http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212
http://www.sciencedirect.com/science/journal/01641212
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sofia%20Charalampidou.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Apostolos%20Ampatzoglou.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Apostolos%20Ampatzoglou.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Apostolos%20Ampatzoglou.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Alexander%20Chatzigeorgiou.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Antonios%20Gkortzis.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Antonios%20Gkortzis.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Antonios%20Gkortzis.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Paris%20Avgeriou.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=8067629
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Nikolaos%20Tsantalis.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Alexander%20Chatzigeorgiou.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4812720
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4812720
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4812720

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 232 – 235

235
IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

Computer Technology (ICECT 2011), pp. 198–200

(2011), IEEE Xplore.

[11] Hironori Washizaki and YoshiakiFukazawa, “A

technique for automatic component extraction from

object-oriented programs by refactoring”,

Elsevier,Science of Computer Programming, Volume 56,

Issues 1–2, April 2005, Pages 99-116

[12] D. Silva, R. Terra, M. T. Valente, "Recommending

automated extract method refactorings", Proceedings of

the 22nd International Conference on Program

Comprehension (ICPC'14), pp. 146-156, 2014.

[13] Sihan Xu, Aishwarya Sivaraman, Siau-Cheng Khoo, Jing

Xu:

GEMS: An Extract Method Refactoring

Recommender. 24-34, 28th IEEE International

Symposium on Software Reliability Engineering, ISSRE

2017, Toulouse, France, October 23-26, 2017. IEEE

Computer Society 2017, ISBN 978-1-5386-0941-5.

[14] Girish Suryanarayana, Ganesh Samarthyam and Tushar

Sharma,” Refactoring for Software Design Smells.

Managing Technical Debt”, ISBN: 978-0-12-801397-7

[15] Z Khanam, SAM Rizvi. “Aspectual Analysis of Legacy

Systems: Code Smells and Transformations in C”,

International Journal of Modern Education and Computer

Science, Volume 5, Issue 11, Page 57, 2013.

[16] Ewan Tempero, Tony Gorschek, Lefteris Angelis ,

“Barriers to Refactoring”.

Communications of the ACM, Vol. 60 No. 10, Pages 54-

61

10.1145/3131873”,2017

[17] SAM Rizvi, Z Khanam . “A Comparative Study of using

Object oriented approach and Aspect oriented approach

for the Evolution of Legacy System”, International

Journal of Computer Applications 1 (782), 0975-8887,

2010.

[18] Harun, M.F. and Lichter, H. Towards a technical debt-

management framework based on cost-benefit analysis.

In Proceedings of the 10th International Conference on

Software Engineering Advances (Barcelona, Spain).

International Academy, Research, and Industry

Association, 2015.

[19] Sérgio Bryton, Fernando Brito e Abreu,” Modularity-

Oriented Refactoring”,2007

[20] Z Khanam, SAM Rizvi, “Assessment of the Impact of

Aspect Oriented Programming on Refactoring

Procedural Software”, Computers and Mathematics in

Automation and Materials Science, MATHIMA-24,

Cambridge, USA, 2014.

https://www.sciencedirect.com/science/journal/01676423
https://www.sciencedirect.com/science/journal/01676423
https://www.sciencedirect.com/science/journal/01676423/56/1
https://www.sciencedirect.com/science/journal/01676423/56/1
https://www.sciencedirect.com/science/journal/01676423/56/1
http://dblp1.uni-trier.de/pers/hd/x/Xu:Sihan
http://dblp1.uni-trier.de/pers/hd/s/Sivaraman:Aishwarya
http://dblp1.uni-trier.de/pers/hd/k/Khoo:Siau=Cheng
http://dblp1.uni-trier.de/pers/hd/x/Xu:Jing
http://dblp1.uni-trier.de/pers/hd/x/Xu:Jing
http://dblp1.uni-trier.de/pers/hd/x/Xu:Jing
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

