
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 270 – 275

270

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

 Architecture for Encapsulation of “Collection Framework Classes” in JAVA for

Reducing the Complexity

 Dr. Mohd Ashraf
Department of Computer Science & Engineering

Maulana Azad National Urdu University

Hyderabad, Telengana

Email Id: ashraf.saifee@gmail.com

Abstract—A Collection Framework classes introduced in the Java core library after the release of JDK version-1.2. Collection framework

classes were built up by Joshua Bloch. Although, Collection framework Classes are widely practiced in today’s environment to develop Java

application. Java application programs suffer from a major problem of complexity and un-scalability. In this paper, the author proposed a design

of the framework which encapsulates Java collection framework classes of complex hierarchy into a single class that is based on some certain

parameters (e.g. data structure used, uniqueness, synchronization). The proposed framework can greatly lessen the efforts required to learn and

use of complex hierarchy of Collection Framework. Further, the proposed framework (Architecture) uses the identical method signature as the

original Collection Framework, which makes it easy to understand for those who earlier use Collection Framework for data storage. Thus, the

users can easily shift to the new framework.

Keywords—Object, Class, Encapsulation, Java Collection Framework, Java Library Class, Data Structure, Decorator pattern, Predator System.

__*****___

I. INTRODUCTION

Reusability has always been a major research area in software

engineering. A big bit of reuse based API has been grown in

Java in order to ease the work of software engineers in

developing software. Using this API, software engineers can

focus on meeting customer demands rather than coding the

elementary services required by the software. Most often

developers are needed to store data in a number of data

structures [16] such as arrays, linked lists, queues, stacks and

hash table on the basis of the unique characteristics of the

stored data [8]. Initially, implementation of Java contained only

a few Classes catering to data store needs such as HashTable,

Vector etc. These were difficult to operate and did not cater to

whole data storage demands. A major breakthrough in this

country was established by Doug Lea’s Collection Package and

ObjectSpace Generic Collection, Library [5, 8, 9, and 11]. This

was uniform with the C++ Standard Tag Library. Using the

ideas of Doug Lea’s Collection Package Joshua Bloch designed

“Java Collection Framework” which was included in the core

library of Java i.e. Rt. jar file from JDK 1.2 release [5, 8, 9, 11].

Java Collection Framework still enjoys a singular position in

today’s technological environment. After many changes were

made to the Collection framework such as including “generic

concept” which introduced compile time type checking [15, 13].

Although the Collection framework is a full-fledged package

catering to whole data storage demands, its complex hierarchy

has led many researchers to knock it as un-scalable and

inflexible library which is difficult to determine and practice

[2]. It contains a number of classes and interfaces which are

often difficult to return. To overcome these limitations, we

have prepared an approach for preparing a property based

framework that can internally use an appropriate data structure

based on the attributes set by the user.

In section II, Author reported researches in the field of making

a property based Collection framework are described.

Furthermore, in section III, the existing approaches have been

described briefly. In section IV, the proposed architecture is

identified with the help of algorithm, flow chart.

II. LITERATURE SURVEY

In the yesteryear, much work in this direction has been acted to

prove a property based collection framework. Below are only

some of them:

A. Predator System

 Predator based system [1] emphasizes the dynamic creation

of data structures based on the features specified by the user

(e.g. If the user specifies that he/she wants the elements should

be inserted in random order, then internally a Hash Table

should be used as the data structure). For designing such a

careful system design and implementation of each element is

needed. The internal details of implementation of data

structures based on features should be abstracted using

interfaces. Interfaces should have three basic properties: High

level abstraction, Standardized Interface and Layered design.

B. Good Framework /Library-a brief outline

Extensive research has been reported along the characteristics

of good collection framework [3]. The extensive work/idea

required to prepare a good framework is a vital matter.

Designing proper abstractions for every functionality is a

decisive job. Java Collection Framework suffers from a major

issue of its complexity which has rendered it inflexible,

unwieldy and difficult to understand and use. In [3] brief study

on features of every component of Collection Framework has

been produced (e.g. The hash table class supports random order

insertion of elements. Here “random order” is a property of

HashTable class). It resolves with a need for putting through a

framework based on characteristics.

B. Decorator-Patter Based Framework

 The decorator design pattern allows new features to be

added by modifying the existing methods, rather than adding

new methods. This can be beneficial to the programmers as it

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 270 – 275

271

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

will not be hard for them to shift to this newfangled technology.

In [6] a framework has been proposed combining the decorator

pattern with proxy design and Template method adding prefix

and suffix operation to previous implementations. Prefix proxy

operations alters the pre-conditions and postfix proxy

operations alters the post-conditions (e.g. the pre-conditions for

add() is to check the type of collection in which data is to be

stored and post-condition is to check whether the specified

collection contains the required data). The main idea behind

this theoretical explanation is that “anytime a feature can be

added to a collection data structure and then could be

dispatched”.

In the next section Collection Framework, which is widely used

today in industries is explained in detail followed by its

limitations.

III. EXISTING APPROACH

In the present scenario the “Collection Framework” included in

the core library of Java (Rt. jar) enjoys an excellent situation in

the marketplace. It consists of a number of classes and

interfaces [5,8,9,11] developed to fit each and every demand of

data memory. The Hierarchical representation of the diverse

classes and interfaces is shown in Fig.1. Each year in the

framework has some properties that outline the course of study

from other divisions.

Fig.1. Collection Framework Hierarchy. Here (I) represents

Interface and (C) represents Class

Collection Framework [5, 8, 9, 11] has a number of elements

in the form of classes and interfaces. At the pinnacle of the

hierarchy is the Collection interface which outlines the basic

operations needed for every storage class (say adding of

elements to a collection). At the next level of the hierarchy is

the List and Set interfaces.

List interface is used to store elements in the insertion order

and support duplicity. It has 3 subclasses namely ArrayList is

supporting insertion order Asynchronized storage, Vector

supports insertion order synchronized storage, LinkedList is

supporting insertion order synchronized storage. Both

ArrayList and Vector internally uses an array data structure

while LinkedList uses linked list as data structure.

Set interface is used to store elements uniquely in ordered or

unordered manner. It has 3 subclasses namely HashSet for

random order insertion Asynchronized storage, LinkedHashSet

for insertion order Asynchronized storage, TreeSet for storing

elements in sorted order asynchronously.

Generics, Autoboxing/unboxing and Enhanced for loop [5]

features were added to Java Collection Framework in JDK-5

and subsequent versions.

IV. PITFALLS OF EXISTING APPROACH

In Collection Framework has a number of classes and

interfaces which are frequently hard to recall. The criticism of

Collection framework is as follows:

 Domain-specific libraries like Collection Framework

serve efficiently for building software. Each

Component of these libraries implements a unique set

of features (HashSet class of the Collection framework

serves for storing elements in random order say). The

Combination of these elements forms a vast library

which is un-scalable [2]. An extended study of these

libraries is required in order to employ even a single

component of the library.

 A good framework is that which make the task of the

programmer easier. Java Collection Framework

despite of its endless advantages suffers a major

drawback due to its complex power structure. It is

clunky, inflexible and difficult to learn and practice

[1].

To overcome these restrictions, we have planned the

architecture for developing a property based framework that

can internally use an appropriate data structure on the attributes

set by the user.

V. PROPOSED APPROACH

The principal idea behind the framework [18] is

“users will define properties and internally the

framework will determine on the Collection Library

class to be applied”

A. Framework Structure

Counting at the major drawback of Collection Framework,

i.e. complexity and difficulty in learning and also not

forgetting about its capability to do all data storage demands,

the framework will use the Collection Library only but will

not employ it immediately. It will require the user to set

certain properties that are:

 Uniqueness: whether data to be stored in collection in

unique way or whether duplicity is allowed.

 Data Structure usage: whether to store elements in

arrays, linked lists, binary tree, hash table or doubly

linked list.

 Ordering of storage: ordering can be random order,

insertion order, or sorted order

 Synchronization: whether the Collection library to use

is synchronized or unsynchronized.

Based on these properties [11] the framework will

internally decide on the Collection, Library class to be

used for storage.

 Our framework also supports the generic nature of collection

library which was introduced to Collection Framework from

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 270 – 275

272

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

JDK version 5 onwards.

 A classification has been made in Table 1 according to the

properties of each of the Components of Collection Library.

TABLE I

UNITS FOR MAGNETIC PROPERTIES

Class/

Interf

ace

Data structure

usage

Unique/

duplicat

e

Order

of

traversa

l

Synchroniz

ed/Asynchr

onized

List (I) Array or Linked List

Duplicity
allowed

Insertion
Order

Asynchroniz
ed

Set (I) Hash Table/Binary

Tree/Doubly Linked
List

Unique

elements

Random/

sorted/
insertion

ordered

Asynchroniz

ed

Sorte

dSet

(I)

Binary Tree Unique

elements

Sorted

order

Asynchroni

zed

Array

List

(C)

Array Duplicit

y

allowed

Insertion

order

Asynchroni

zed

Vecto

r (C)

Array Duplicit

y

allowed

Insertion

order

Synchroniz

ed

Linke

dList

(C)

Linked List Duplicit

y

allowed

Insertion

order

Asynchroni

zed

Hash

Set

(C)

Hash Table Unique

element

Random

order

Asynchroni

zed

Linke

dHash

Set

(C)

Doubly Linked

List

Unique

element

Insertion

order

Asynchroni

zed

TreeS

et (C)

Binary Tree Unique

element

Sorted

order

Asynchroni

zed

The table classifies all the major components of Collection Framework based

on the properties possessed by them. Here (I) represents interface and (C)
represents class that implements the interfaces.

B. Algorithm

 Our framework design follows the following

algorithm internally to use properties as a base for

selecting an appropriate Collection Library class.

Step1:[Specification of Properties] Properties are specified in an XML

file [17] namely “Collection.xml”. This is done at user side. The xml

file starts with the root tag as <Colmer>. The nested tag <Collection>

describes a single collection. The nested tags of <Collection> and their

allowed values are as follows:

It is to be noted that the user can select any combination of

properties, but only few maps to a valid Collection Framework

class. So one has to be careful while choosing a combination of

properties. The framework will take into account all the

properties mentioned by user and then decide a Collection class

to be used internally. If a combination do not map to any of the

Collection classes, then an error will be thrown.

Step2: [Storing Properties in a properties file] In the main

program user need to create the object of XMLInitiator class

and call its init() method which will read [19] the

Collection.xml file [14] and store the properties in

the ../produced/Collection_name.Properties file. In addition to

storage of properties the Framework internally uses these

properties and decide on the Collection, Library to be used and

store it in the same file. The keys in the properties file and their

associated allowed values are as follows:

Step3: [Making the object of Colmer class] in the main

program user need to attain the object of Colmer class.

Colmer<T> class act as an intermediary between the class that

perform actual storage of factors in the particular Collection

Library class and the main course of study. Colmer<T> class

reads the ../produced/Collection_name.Properties file. Utilizing

the properties file it says the value corresponding to the

Collection-used key and directs the storage to a grade that does

actual storage. E.g. if the value corresponding to the

Collection-used is LinkedList then Colmer<T> class will create

the object of ColmerLinkedList<T> and directs the actual

storage to this class. The constructors of Colmer class are as

follows:

Here col_name is the name of the Collection specified by the user in

the Collection.xml file. If there is no Collection-name same as the

name passed by user then an error is displayed "no entry found in xml

for collection specified". minCap is the minimum capacity of

the data structure required.

Step4: [Making a call to any of the method] using the

Colmer<T> class object the user can make the call to any of the

methods that aid in storage, deletion or retrieval of elements.

The methods accept the same syntax as in the original

Collection Framework, which facilitate the task of programmer

as he do not have to read entirely new set of methods. For e.g.

Data-Structure= linked list/array/binary tree/doubly linked

list/hash table

Order= insertion order/random order/sorted order

Collection-name= Collection_name (any user defined name)

Synchronize=asynchronize/synchronize

Unique=duplicate/unique

Collection-used=

LinkedList/ArrayList/HashSet/Vector/TreeSet/LinkedHashSet

<Collection-Name>Collection_name (any user defined

name)</Collection-Name>

<Data-Structure>linked list/array/binary tree/doubly linked

list/hash table</Data-Structure>

<Unique>duplicate/unique</Unique>

<Order>insertion order/random order/sorted order</Order>

<Synchronize>asynchronize/synchronize</Synchronize>

public Colmer(String col_name)

public Colmer(String col_name,int minCapacity)

public Colmer(String col_copy, Colmer<T> c)

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 270 – 275

273

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

to add an element to the collection syntax is add(T element)

where T is the type variable. This is same as the Classical

Collection Framework.

C. Flow Diagram Representation

Below is the flow chart representation of the proposed

framework.

It is to be noted that col1.properties are being

exactly an example of Properties file. Col1 is the

user defined name specified in the Collection.xml

file.

D. Component Specification

There are a number of components in the proposed

framework which require an in depth explanation. Our

framework consists of 6 major components namely:

 Collection.xml file

 .java file

 XMLInitiator.java

 XMLAnalyzer.java

 Colmer.java

 Actual Storage classes

I. Collection.xml file

 Attributes are defined in an XML file [17] namely

“Collection.xml”. This is performed at the user side. The xml

file starts with the root tag as <Colmer>. The nested tag

<Collection> specify describes a single collection. An e.g.

Collection.xml file is as follows

II. .java files

 The main program of user is specified in these files. There

may be only a single Java file or many Java files which are at

user discretion. The .java file needs to [5,8,9,11] import Java.

util. *, calmer. xmlreader. XMLInititor and calmer. Mains.

colmer libraries. An e.g. .java file is as follows:

III. XMLInitiator.java

 The function of XMLInitiator.java is to read the

Collection.xml [19] file [14]. After recording the properties are

passed to XMLAnalyzer.java:

IV. XMLAnalyzer.java

 The function of XMLAnalyzer.java is to study the attributes

and decide the Collection, Library class to be habituated. The

properties along with the collection library used are stored in

the col1.properties file [12] (col1 is user defined name in

Collection.xml file). After reading the properties are passed to

XMLAnalyzer.java:

User

side

public class A{

public static void main(String args[]){

XMLReader xr=new XMLReader();

xr.initiate();

Colmer<Integer> c=new Colmer<Integer>("col1");

c.add(1);

}

}

public class XMLInitiator {

public void initiate(){

reading xml file and passing properties to XMLAnalyzer

analyze(list of properties as parameters)

}

}

public class XMLAnalyzer {

public void analyze(list of properties as parameters){

//to do task here

}

}

<Colmer>

<Collection>

<Collection-Name>col1</Collection-Name>

<Data-Structure>linked list</Data-Structure>

<Unique>duplicate</Unique>

<Order>insertion order</Order>

<Synchronize>asynchronize</Synchronize>

</Collection>

</Colmer>

.add(eleme

nt)

Object of

Colmer<T

>

 Collection.xml

Properties are

specified

. java file(main

program)

Main program

goes

XMLInitiator.java

Read Properties from

Collection.xml and

pass it to the

XMLAnalyzer

Object of

XMLInitia

tor

XMLAnalyzer.java

Store the Properties in

col1.Properties file and use

Properties to decide internal

Collection to be used. Also

store it in Properties file

Col1.Properties

Key-value pairs of

all properties and

Collection Library

class to be used

Initiat

e ()

Colmer<T>.java

Read Properties file and

retrieve the value

corresponding to

“Collection-used” key.

Colmer<T>.java

Directs storage to actual

storage class

Object of

ColmerLinke

dList<T>

ColmerLinkedList<T>.java

Store data in LinkedList

.add(element)

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 270 – 275

274

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

V. Colmer.java

 Colmer<T> is a generic [13] class. Here T is the type

parameter. It acts as the intermediary between the main user

program and the actual storage classes. It reads the properties

file and directs the storage to required storage class. It uses

three constructors as:

public Colmer(String col_name) constructor creates a

collection whose properties are specified in the

col_name.properties class.

public Colmer(String col_name, int minCapacity) constructor

creates a collection with minimum capacity as minCapacity and

whose properties are stored in col_name,properties file

public Colmer(String col_copy, Colmer<T> c) constructor

copies the Collection c to the new Collection whose properties

are stored in col_copy.properties file. Here the type mismatch

between the target collection and source collection will lead to

type mismatch error.

VI. Actual storage classes

 Actual storage classes are contained in colmer.storageclasses

package. Their name, constructor and methods will vary

according to the internal Collection Library. All the methods

are same as classic collection Library classes. These are also

generic [13] classes. For e.g. if collection to be used is linked

list, then internally ColmerLinkedList<T> class will be used.

VI. CONCLUSIONS

A framework which utilizes the actual Collection library,

since it is a full-fledged library to cater all needs of storage and

also eliminating its limitation of being complex can be

developed using the above devised algorithm and flow

diagram.

The proposed framework has not included Map based

collections in its scope which paves way for further research in

this area.

ACKNOWLEDGMENT

I would like to take this opportunity to express my

profound gratitude and deep regard to Dr. Mohd

Ashraf Saifi, for his exemplary guidance, valuable

feedback and constant encouragement throughout

the duration of my research. His valuable

suggestions were of immense help throughout my

work. His perspective criticism kept me working to

make this research in a much better way. Working

under him was an extremely knowledgeable

experience for me.

References
[1] Lars Heinemann, “Effective and Efficient Reuse with Software

Libraries”, Technische Universitat Munchen, July 2012

[2] Jeff Thomas, Don Batory and Vivek Singhal, “Scalable Approach

to Software Library”, 6th annual workshop on software reuse,

November 1993

[3] Virginia Niculescu, Dana Lupasa and Radu Lupasa, “Issues in

Collection Framework Design”, Studia Univ. Babes, Informatica,

Volume LVII, November 4 2012

[4] J. Bloch, The Java Tutorial. Trail:

http://docs.oracle.com/javase/tutorial/collection.

[5] Sun Microsystems. Collections Framework Overview. [Online].

Viewed 2010 July 23.

Available:

http://java.sun.com/javase/6/docs/technotes/guides/collections/ov

erview.html.

[6] Virginia Niculescu and Dana Lupasa, “A Decorator based Design

for Collections, Volume LVIII, November 3, 2013.

[7] Joshua Bloch – Effective Java from the source; Second Edition;

Sun Microsystems, May 2008.

[8] Guoqing Xu, “Finding Reusable Data Structures”, ACM Digital

Library, 2012.

[9] Doug Lee, “Overview of Collection Package”, 1999.

[10] Herbert Schildt– Java: The Complete Reference, Seventh Edition,

McGraw Hill Professional, 01-Dec-2006.

[11] Java Collection Framework-Wikipedia:

Available:

http://en.wikipedia.org/wiki/Java_collections_framework.

[12] Sun Microsystems. Java. util. Properties. [Online]. Viewed 2014.

Available:

https://docs.oracle.com/javase/7/docs/api/java/util/package-

summary.html.

[13] Sun Microsystems. Java Generics. [Online]. Viewed 2014.

Available: https://docs.oracle.com/javase/tutorial/java/generics/.

[14] Sun Microsystems. Reading XML Data into DOM. [Online].

Viewed 2014.

Available:

https://docs.oracle.com/javase/tutorial/jaxp/dom/readingXML.ht

ml.

[15] Maurice Naftalin, Philip Wadler– Java Generics and Collection;

Orielly, 2006.

[16] Nell Dale, Daniel Joyce, Chip Weems– Object Oriented Data

Structures using Java; Third edition, 2011.

[17] Williamson- Xml: The Complete Reference; Tata McGraw-Hill

Education, 2001.

[18] Jaroslav Tulach- Practical API Design: Confessions of a Java

Framework Architect; Apress, 2008.

public Colmer(String col_name){//(1)

//to do task here

}

public Colmer(String col_name, int minCapacity){//(2)

//to do task here

}

public Colmer(String col_copy, Colmer<T> c){//(3)

//to do task here

}

 // methods same as original Collection framework

e.g. public boolean add(T element){}

public class ColmerLinkedList<T> {

LinkedList<T> l;

public ColmerLinkedList(){ // constructor

l=new LinkedList<T>();// creation of Object of classic

linked list class

}

// methods same as classic LinkedList class

e.g.

public Boolean add(T element){

// to do task here

}

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 270 – 275

275

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

[19] Sun Microsystems. Reading, writing and creating files. [Online].

Viewed 2014.

Available:

https://docs.oracle.com/javase/tutorial/essential/io/file.html.

[20] E Balaguruswamy- Programming with Java: A Primer; Tata

McGraw-Hill Education, 2009.

.add(eleme

nt)

Object of

Colmer<T>

 Collection.xml

Properties are

specified

. java file(main

program)

Main program

goes

XMLInitiator.java
Read Properties from

Collection.xml and pass

it to the XMLAnalyzer

Object of

XMLInitiat

or

XMLAnalyzer.java
Store the Properties in

col1.Properties file and use

Properties to decide internal

Collection to be used. Also

store it in Properties file

Col1.Properties
Key-value pairs of

all properties and

Collection Library

class to be used

Initiat

e ()

Colmer<T>.java
Read Properties file and

retrieve the value

corresponding to

“Collection-used” key.

Colmer<T>.java

Directs storage to actual

storage class

Object of

ColmerLinked

List<T>

ColmerLinkedList<T>.java

Store data in LinkedList

.add(element)

