
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 392 – 399

392

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

The Survey of the Code Clone Detection Techniques and Process with Types (I,

II, III and IV)

Gundeep Kaur
1
, Er. Sumit Sharma

2

M.Tech(Scholar), Assistant Professor

Department of Computer Science & Engineering

Chandigarh University, Gharuan, Mohali, Punjab, India-140413

E-mail: kaurgundeep7@gmail.com, cu.sumitsharma@gmail.com

Abstract- In software upgradation code clones are regularly utilized. So, we can contemplate on code location strategies goes past introductory

code. In condition of-craftsmanship on clone programming study, we perceived the absence of methodical overview. We clarified the earlier

research-in view of deliberate and broad database find and the hole of research for additionally think about. Software support cost is more than

outlining cost. Code cloning is useful in several areas like detecting library contents, understanding program, detecting malicious program, etc.

and apart from pros several serious impact of code cloning on quality, reusability and continuity of software framework. In this paper, we have

discussed the code clone and its evolution and classification of code clone. Code clone is classified into 4 types namely Type I, Type II, III and

IV. The exact code as well as copied code is depicted in detail for each type of code clone. Several clone detection techniques such as: Text,

token, metric, hybrid based techniques were studied comparatively. Comparison of detection tools such as: clone DR, covet, Duploc, CLAN, etc.

based on different techniques used are highlighted and cloning process is also explained. Code clones are identical segment of source code which

might be inserted intentionally or unintentionally. Reusing code snippets via copying and pasting with or without minor alterations is general

task in software development. But the existence of code clones may reduce the design structure and quality of software like changeability,

readability and maintainability and hence increase the continuation charges.

Keywords – Software Upgrading code clone, Evolution of code clone, classification method and hybrid method.

__*****___

I. INTRODUCTION

Software maintenance is last and big-budgeted period of

SDLC[1]. The major concern behind product support is the

change of current programming framework by including new

functionalities, to rectify errors in the product framework or

because of the new necessities of the association that are not

distinguished amid the prerequisite stage. Yet, the most

extreme endeavors arerequired while expanding the current

programming by including new functionalities. One of the

systems utilized for programming support is Software Re-

engineering [2]ois the most utilized .

Software Re-engineering is to examine the current framework

and manufacture it again with better functionalities. Software

Re-engineering is wide and challenging part approaching

recently. Since, while re-designing the current framework the

software engineer reuse the code with or without assist

changes which can prompt the repeat of code over andover.

In software re-engineering code cloning is finished by reusing

code as it is or differently with a few alterations. This

procedure is known as Code Cloning. One noteworthy writing

study, we portrayed the past procedures and location apparatus

in the code clone detection.In writing overview checks

different key zones of research on clone programming,

depicted the fundamental idea, strategy utilized and

recognition instrument.As per Brooks more than ninety level

of the product cost relies upon programming support

occasions. In the middle of 7 percent up to 23 percent of

programming frameworks contains clone code. The principle test

of code cloning for programming preserves because it duplicates

without cause amplify program-estimate. Since a few upkeep

endeavors associated with program-estimate that expand the

support exertion. At the point when adjusts to copy source code

parts are performed in- reliably, this could decideblunders

1.1 Definition of code clone

Code Cloning characterizes by and large, all through the planning

and advancement of programming frameworks. An Ad-hoc

structure of re-utilize contains of duplicating and changing a

square of past code that plan a bit of required usefulness [3].

Replicated squares are known as clones and duplicating

execution, comprising little changes is cloning. Piece duplicating

code and after that re-use by sticking without or with little

changes/varieties are typical occasions in programming

advancement. Sort of re-utilize system of earlier code is known as

cloning and the stuck section program is known as a duplicate of

thefirst.

Figure illustrates the code clones. The results of several analyses

proves that a notable section of 5- 10% of source-code in big

software systems is duplicate code. The rationale of code cloning

could be intentional or accidental. Escalating the cloning

condition is done quickly and irrelevant to surrounding i.e. bug

free code becomes incorrect after cloning.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 392 – 399

393

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

Fig 1. Codes with Clones

II. EVOLUTION AND TYPES OF CODE CLONE

Clones are differently classifiedas per their similarity level. In

TYPE-1 clone is confirmed clone duplicate dis-regard to

blank areas and remarks. These are called as homogeneous

clones. In TYPE-2 clones a few changes in factor changes,

literals and sorts, white area, outline design and remarks. The

third type of clone includesall changes of TYPE-1 and 2

clones e.g. expansion or disposal of articulations. The non-

likeness most extreme edge of a clone finder chooses how

much non-comparable parts can be clone class is same[4].

Utilize string construct energetic example coordinating with

respect to speck plots to liken entire lines that have been

managed to overlook void area and remarks. Diagonals with

holes demonstrate conceivable clones of Type-3, and an

outline tracker is keep running on the framework to discover

diagonals with gaps up to a positive area.

Some paper contemplated, TYPE-2 and 3 clones similarly

viewed together as close duplications. It has been inquired

about on dissecting the development of code clones. This

examination dissected how code clones are modified through

Versions for different levels of granularity, for assorted

subject frameworks recorded in disparate dialects, utilizing

different clone recognition apparatuses and from various

perspectives.

The majority of the concentrated on TYPE 2 and 1look alike

and existing data according to development of TYPE-1 and 2

clones are for all intents and purposes rich. Sort 1 implies

indistinguishable source code replicated; TYPE-2 duplicates

character re-names of symbols; TYPE-3 clone's night

character increasingly broad changes. The current hash based

systems of clone recognition oversee just TYPE-1 and TYPE-

2. We portrayed hash-capacities for TYPE-1, 2 and 3 clones

which display sensible presentation precision. In TYPE-4 in

light of capacity same yet they are different in sentence

structure. This clone is named as TYPE-4 semantic clones, in

these sorts of codes; cloned part isn't basically copied from

the first code. Codes are identical and termed as code clone. The

clone could be determined into two types:

Similar type of one the texture similarity and other considers the

semantic similarity in which the code clone must have similar

activities, means functionality similarity. The type of clones are

generally consequence of duplicate a code segment and the

copying to differentposition.

Here, we describe duplicate kinds relied-on the type of identical

binary code segments could be:

 Texture Similarity: A binary programs segments could be

same depending upon the resemblance of their code-text. The

clonesclasses are described to search textureresemblance.

Type I: is called perfect clones where a duplicate code portion is

similar to unique code segment except for some feasible

variations in blanks and comments.For e.g.

Exact Code Copied code

int a, b, big;
//Comment 1

if(a>b)

{

big = a;//a

assigned as biggest

}
else

{

big = b;//b

assigned as biggest

}

System.out.print("Lar

gest of Two Number is

" +big);// Comment 2

int a, b, big;
if(a>b) //Comment

1

{

big = a;//a

assigned as biggest

}
else// Comment 2

{

big = b;//b

assigned as biggest

}

System.out.println("Largest

of Two Number is "

+big);

In the above code there is a text similarity if we remove

comments and whitespaces.

Type II: is called renamed clones where duplicate code

segment is sameas native code fragment excluding few

probable dissimilarities of user- defined variables

(methods,constants, classes etc.), types, design or

comments.

Exact Code Copied code

intx,y,grtr;

if(x>y)

{

grtr =x; }

else

{

grtr=y; }

System.out.println("Large

stofTwo Number is"

+grtr);

int x1,y1,grtr1;

if(x1>y1)

{

grtr1 =x1;

}

else

{

grtr1 =y1; }

System.out.println("Larg

e stofTwo Number is"

+grtr1);

Copy

and

Paste

Renamed

If(a>b)
{

b++;

a=1;

}

If(a>b)
{

b++;

a=1;

}

If(p>q)
{

q++;

p=1;

} Original

Code

Clone
Re-named

Code

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 392 – 399

394

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

In the above code there is a change in the names of variables.

Type III: a Duplicate code segment is altered by shifting the

design of original code segment e.g. adding or discardingfew

statements.

Exact Code (Fragment1

developed by developer A

to calculate the

factorial.)

Copied code

((Fragment1developed

by developer A to

calculate the factorial.)

Inta, b=1;

for (a=1; a<=VALUE;

a++)

b=b*i;

int fact(int x) {

if (x == 0) return 1 ;

else return x * fact(x-1) ;

}

 Functionality Similarity: Fragment code could be same

on the similarity of theirfunctionalities

without being text same. When the usefulness of binary

program segments are same or identical, like post and pre-

situations referred as Type –IV clones:

Type IV:Such clones have semantic look alike among code

segments. Clones of such kind are not essentially copied from

native code because there exists similar meaning and are alike

usefulness but already developed by another programmer..

Exact Code Copied code

int a, b, big;

//condition to check

biggest number

if(a>b)

{

big = a;

}

else

{

big = b;

}

System.out.println("L

argest of Two Number is

" +big);

int x , y,result

int result = (x>y)?i:y;

System.out.println(("Lar

gest of Two Number is "

+result);

}

}

Other Clone Detection Terms are which also comes under

above mentioned types:

i. Exact Clones: Exact clones are essentially Type I.

ii. Renamed Clones: Renamed Clones are Type 2 clones.

iii. Parameterized Clones: A parameterized look alike are

renamed with organized renaming. These clones are

subset of TypeII.

iv. Near-Miss Clones: All clones of Type II are near-miss

clones. However, modification within a statement(s) are

considered as near – miss look alike. So, Type III look

alike can be named as near-missclones.

v. Structural Clones: Itconcentrates to discover identical

architecturestructures.

vi. Reordered Clones: Based upon semantic resemblance,

arranged clones are of TypeIV.

vii. Intertwined Clones: segments are identicalas per their

usefulness. Thus interlaced lookalike are taken as Type

IVduplicate.

Table 1. Types of Code Clone Terminology

Types of

Clone
Description

TYPE-1

Clone[5]

Same program segment

excluding to deviation of comments, layout design or

whitespaces.

TYPE -2
Clone [5]

Identifiers, variables and literals, comments and
whitespaces

TYPE-3 Clone
Increase the code line in the

original code

TYPE-4 Clone

Same computation but implements the different logic.

Same Function

Code[6]

Gives a same functionality with respect to explanation

of resemblance, but could be designed uniquely.

Solution Records[6]
Individual codeof single record

developing ananswer to coding issue.

Solution

Set[6]

Solutions records re-solve the similar coding issue.

Clone set[7]

Binary solution records out of similarresult-set that

supposed to function equally.

III. LITERATURESURVEY

E. Kodhai, et al (2016) [17] presented an incremental clone

detection along with hybrid approach to locate clones in multiple

alterations of program. This hybrid technique is a merger of

metrics computation and textual analysis. In period of last ten

years, considerable research effort was made for detection and

expulsion of clones from software framework. However, some

practical tools are available for programming languages. Majority

of techniques used for clone detection are limited one alteration

of program. Both techniques of clone detection and modification

functionalities are united with Clone Manager, is a tool for Java

and C programs. This incremental technique is an improved

feature to Clone Manager tool. They examined the improved

Clone Manager tool with parameters recall ratio and precision for

6 open source projects. Dongjin Yu, Jie Wang et al., (2017) [18]

proposed a novel technique of code clone detection based on Java

bytecode. Code clones are commonly believed as unwanted for

many reasons, despite of ease provided to developers.

Identification of code clones improvise the quality of source code

via software re- engineering. Several methods were proposed in

Java source code while just few concerned to its bytecode. The

Java bytecode displays semantic nature of code. Using the block-

level code fragments extracted from bytecode, and simultaneously

identify code clones at both method level and block level. During

code clone detection process the similarities of instruction

sequences and call sequences are calculated to enhance accuracy

and performance. The results proves that proposed method is

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 392 – 399

395

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

more effective than existing methods.Yingnong Dang, et al.,

(2017)[19] described the encounter of shifting XIAO, a code-

clone detection and analysis approach and supporting tool, to

wide industrial practices i.e., (1) shipped in Visual Studio

2012, a broadly used industrial IDE; (2) deployed and

intensively used at the Microsoft Security Response Centre.

Amid programming improvement, code clones are normally

delivered, as some of the same or comparative code pieces

spreading inside one or numerous expansive code bases.

Various research ventures have been done on experimental

investigations or apparatus bolster for distinguishing or

dissecting code clones. Nonetheless, practically speaking,

couple of such research ventures have brought about generous

industry adoption. According to our encounters, innovation

exchange is a fairly confounded excursion that requirements

huge endeavors from both the specialized viewpoint and

social perspective. From the specialized perspective, huge

endeavors are expected to adjust an examination model to an

item quality device that tends to the requirements of genuine

situations, to be coordinated into a standard item or

advancement process. From the social viewpoint, there are

solid needs to cooperate with professionals to recognize

executioner situations in mechanical settings, make sense of

the hole between an examination model and an apparatus

fitting the necessities of genuine situations, to comprehend the

prerequisites of discharging with a standard item, being

coordinated into an improvement procedure, understanding

their discharge rhythm, and so forth. ShrutiJadon, (2016)

[20] proposed to create a feature set by analyzing C program

for fragments of code and matching similarities. Code clones

characterized as succession of source code that happen more

than once in a similar program or crosswise over various

projects are unfortunate as they increment the span of

program and makes the issues of excess. Settling of bugs

recognized in one clone require discovery of all clones.

Henceforth, it is basic to recognize and evacuate all code

clones in a program. The concentrate of past research chip

away at the code clone location was to discover

indistinguishable clones, or clones that are indistinguishable

up to identifiers and strict esteems. Be that as it may,

identification of comparable clones is regularly essential.

Based on highlight sets the grouping of calculation is being

performed by utilizing the Support Vector Machine (SVM) as

a machine learning apparatus. The yield of the machine device

would be the closeness proportion with which the two C

programs are identified with each other and furthermore the

class in which they would happen. It was watched that the test

consequences of the instrument execution indicate

identification of code clones in the program and its exactness

increments with the expansion in number of occurrences.

Abdullah Sheneamer et al., (2015) [21]presented a hybrid

technique which utilized a coarse grain method to break down

the clones efficiently to enhance precision. In the event that

two parts of program code is indistinguishable to all of them, are

known as code clones. Program look alike present challenges of

programming upkeep, virus engendering. Coarse-grained

duplicates indicators have maximum accuracy than finely

grained, yet such identifiers have better review in comparison

coarse-grained. Such manner, utilizes fine-grained identifier to

get extra data related to clones and enhance review. This

technique distinguishes Type 1, 2 look alike utilizing hash

esteems to pieces, and missingprograms clones utilizing square

discovery or resulting examination among them utilizing Leven-

shtein separation and Cosine methodsof changing limits.

Chanchal K. Roy, et al., (2014)

[22] presented a complete survey on recent clone management

with deep study of its activities such as tracing, cost benefit

analysis, etc. which are past detection analysis. Copied code or

code clones are a sort of code notice that have both positive and

negative effects on the advancement and upkeep of programming

frameworks. Programming clone inquire about in the past for the

most part centeredon the recognition and examination of code

clones, while look into as of late reaches out to the entire range of

clone administration. In recent decade, three studies showed up in

the writing, which cover the identification, investigation, and

developmental attributes of codeclones.

Table 2. Literature Survey Performance Parameters Analysis

Author Name Technique s Used Drawback Parameters

E.Kodhai et al.,2016

Incremental clone

detection

duplicate d code
fragment

s or code

clones.

Recall, Precision

Dongjin Yu et al.,
2017

block-level code

fragments extracted
maintain ing of

software
Precision, Recall
and F-measure

Yingnong Dang et

al.,

2017

XIAO
classifies

inconsistencies,

-

ShrutiJadon et al.,
2016

Support Vector
Machine

Problem sof

redundan cy.

Accuracy

Abdullah Sheneamer

et al.,2015

Grouping and

Hashing Normalized

Blocks

software

maintenance

and cause bug

propagat ion

Precision, Recall

and F-measure

Chanchal K. Roy et

al.,2014 suffix-tree- based
constrain tsatisfacti

on optimization
-

This is the main overview on clone administration, where we

point to the accomplishments up until now, and uncover roads for

additionally look into vital towards a coordinated clone

administration framework. We trust that we have completed a

great job in looking over the territory of clone administration and

that this work may fill in as a guide for future research in

theregion.

Structure of Clone Detection: The overall structure involved in

Clone Detection include methods such as determining type of

clones, Classification of code clone, and

Transformation/Normalization.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 392 – 399

396

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

Fig 2. Structure of Clone Detection

IV. CLONE DETECTIONTECHNIQUES

Clone detection deals with finding similar code in two

programs or more than two. Detection can be based on

Textual analysis, Lexical analysis, Syntax analysis, Semantic

analysis, Hybrid analysis and Metric analysis.

 Text Base Method: This technique is used to find similar

text in large software systems, web pages or in text files. In

this no transformation is required. This approach is used to

detect Type1 clones. Text based approach doesn’t perform

any semantic and syntactic study of source code it is fastest

clone detection methods. It is the simple way to detect clone,

which precedes each LOC (Line of code) representation. The

objective source program is characterized to be arrangement

of lines or strings. At that point the paired code pieces are

assessed with each other to look throughthe

coordinated arrangement of content. On the off chance that

match is sought, that is more code portions are observed to be

similar, at that point they are continued as clone

class/combine by the discovery technique.[8].

 Token-Based Method: Token-based approach is same as

text-based approach however instead of taking a LOC as

representation directly, a lexical study converts each lines of

code into a series of tokens. After information values,

identifier are replaced by several tokens. The token series of

these segments are evaluated effectively through a suffix tree

algorithm. The result is also presented in dot deployment

graph. This method is slower than text-based technique since

of the tokenization phases. Applying the suffix tree matching

method, the time-complexity is same as text based method. In

this, source code is transformed in to lexical, also known as

tokens. Type-1 and Type-2 clones can be detected using this

approach[9].

 Abstract syntax tree (AST): In Tree based method a program

is generated into aparsed tree/ syntax tree with the block of the

code of interest. Same sub-trees are then found in the tree with

some tree coordinating strategies and the comparing source code

of a similar sub-trees are continued as clones classes/sets. The

AST comprise the entire data about the source code. Variable

names of the source are rejected in the tree represents; refined

techniques for the detection of clones still could be applied. It

converts token in to syntax tree. A clone detected by using such

kind of approach is known as Type 3 clones[10].

4.4. Program Dependence Graph Based approach: Data

dependencies of a program could be represented as a execute

program dependency graph. Since it files the relationship

between the structure and data, it could be used to trace the

change after developers copy and paste events. The PDG method

takes one-step further than abstract syntax tree method i.e, to find

the PDG of the system. This technique is used to detect syntactic

as well as semantic behavior of source code. It shows the control

flow and data dependence. It is used to detect Type 4 clones[11].

 Metric Based Method: Despite of evaluating the program

flatly dissimilar metric of program are collected and compared to

discover clones [12]. A few clone location strategies today utilize

measurements for identifying same codes. In the beginning

capacities which are obscure however an arrangement of

programming measurements are assessed for syntactic units, for

example, a capacity or class, strategy or even an announcement

then these metric-values are computed to seek clones. Then the

metric were compared from lay-out, expression, names and

individual control-flowof the function.A clone is detected

only when class of whole function bodies that have same

metric values are verified.

 Hybrid-based Method: Various different detecting methods

utilize hybrid method in detecting clones. Such approach is a

combination of the other detection methods. This

methodintegrates syntactic method relied upon abstract syntax

tree semantic and metrics methods in combined with particular

comparisonfunctions.

Table 3. Semantic Clone detection and Comparative Study

Transfor

mati on

/Norma

lization s

Sourc e

Code

Represent

ati

on

Clone

Match

ingTechni

que

Merits

Demerit s

Tools

Progra m

Depend
ence

[12]Gra

ph

Find
Graine d

n- length

patch
matching

High

Precisio

n and
Recal l

Needs a

PDG

generatio n

for dissimila r

language

, works for C

language

Duplex

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 392 – 399

397

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

Suffer

code to
PDG

PDG

Dependen

ce Graph

sub-
graph

compa

ring using
progra m

slicing

Featu re
Extra

ction

can
process

of

refactori
ng

Slow and
huge code

bases

PDG-

Dup

Token and

CommentR

emov al

Text
Vector

define d in
LSI

Searc h

high

level
structure

clone

s

High

dependent on

comment, less
precision

-

Abstrac t

Syntax

Tree

Programmin

g

detecting

exact and

near miss
cl ones o

verarbitrar

y

progra m

fragments

block

level

clone

detectio
n

Time

consuming
-

Hybrid

syntactic

and
semanticc

haracteristi

c s

Textur e
and

Metric
based

Light
weightP

recision

value
come s

high

-
MCD

Finder
(Java)

V. CODE CLONE DETECTIONTOOL

Anconcept of such result was that the study recognized

answers to execute the coding languages since we distinguish

for an often issue, the main results must executionaly same.

Consequently, the choosinganalyzed things required to add

clone detectingmethods. The program can be accessed and

results while executing coding platforms supports by almost

allsimulation methods fordetection.

Principally, they required duplicate detection simulation

methodto detect Type 1,2 and3 clones to study the syntactic

resemblanceof FSCs. They generated a survey and look for

existing simulation methods.Severalwork pro-types weren’t

available or cannot be brought to execute acceptably.

Numerous simulation tools weren’t added in the analyses

because of scalability and under performance / decreases of

help for few clone-types [13].

Clone-DR and CP-Miner have less execution and efficiency

evaluated to Deckard. CC- Finder has less executionas

compared to Deckard and doesn’t provision type3 clones. In

last, they select binary clone detection simulation tools that

together could study JAVA and C programs: ConQAT and

Deckard. ConQAT is discussed in as newest, useful or

speedily easily available detector of duplicate structure or

system. While analyses, Deckard has defined withbetter

execution and scalable asthey are well explained and have

been used in prior study. Particularly, at time of analyses,

those were binary methodsareeasily available and easy to

create them work forourselves.

ConQAT is a steady freeware dash-board tool-kit used in

trade. It is normal aim simulation approach for several types

of code size and explanation theory. ConQAT , gives various

particular code duplication detection for several coding platforms

adding C/C++, cobol, and JAVA. This divide detecting methods

for Type-1 or 2 or 3 clones. They used the previous method.

ConQAThasbeen described in several analyses in look alike

detection adding the study they construct on. Deckard uses an

effective method for verifying same sub-trees and registered it to

tree re-presentations of native code. This commonly create a

parsetree constructor to construct parse-trees necessary due to its

method. By a same parameter it is possible to control whether

only Type-1, Type-2 clones and Type-3 clones are detected.

Deckard is stable tool described in-other analyses in adding the

study, we construct on.CCCD is a new clone detection simulation

tool that describes concolic study as its main method to detect

code-clonesConcolic examine affiliation's representative program

execute and testing. CCCD identifies just copies in execute

programs planned in C. The concolic contemplate offers CCCD

to objective on the usefulness of execute-program as opposed to

the syntactic properties. It has the strict that it just identifies work

level clones[14].

Table no. 4 Comparison of code clone detection tool

Tools Compared
Techniques

CCFinder [14] Suffix Tree and Token

Clone DR
Abstract Syntax

 Tree,

Hashing

Covet
Abstract Syntax Tree and

Metrics

Duploc Texture, Sub-string Matching

Dup[14] Text, Token and suffix Tree

CLAN Abstract Tree and Metric

CCDIMI AST, Tree Matching

PDG-DUP PDG, Program Slicing

Clones Token, Suffix Tree

VI. CODE CLONE DETECTIONPROCESS

Code detection must need to search blocks of programs with

maximum resemblance in system source texture. Major issue is

that it isn’t identified before-hand which code fragments might be

rewritten. The detection actually should evaluate each possible

piece with each other possible portion.

Here, we describe an overview of fundamental phases

ofduplicatecode detection method. Clone Detection Process as

described as follows:

 Pre-processing:In this phase all the uninterested part in the

source code is removed and then source units are determined

(functions or methods,files, begin-end blocks, classes,statements

or seriesof source lines). Then native units can be sub-

divided into tokens or lines for assessment. Contrast entities

can be resulting out of the syntactic design of source

unit[15].

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 392 – 399

398

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

In pre-processing are three main steps:

 Un-interesting Part Remove: Every source-code un-

interesting to the comparison step is clarified out in thisstep.

 Conclude Source Units: Later reducing the un- interesting

program, the left source code is divided into a set of dis-joint

fragments known as native entity. This unit is the main

source- parts that might be complicated in flat clone

connections with everyone. Source-units could be at any level

of granularity i.e, Records, clusters or classes, methods or

functions, sequence of source lines and start-endblocks.

 Conclude Evaluation Units: In source-units might require to

be further divided into small units provisional on the

evaluation method used be the tool.

 Transformation: Evaluation is concluded, when the

evaluation method is different from text, the basic code of the

evaluation units is converted to a suitable intermediate form

for evaluation. Conversion of the source-code into

centerformation is frequently known as withdrawn in the

converse disciplinecommunal.

 Extraction: It converts source-code to appropriate form

as input to the original evaluation methods. It is generally

includes various following phases.

 Tokenization: Every line of source is portioned into tokens

giving to lexical code of any coding platform.

 Parsing: A syntactic method, the complete source-code base

is decoded to construct anAST orparsetree.

 Data Flow and Control Analysis: Semantics methods create

PDG from the source-code. The PDG describe the statements

and situations of a code, while regions shows data

dependencies or control.

 Normalization: It is optional phase considered to remove

superficial diverse like dissimilar in white-spaces, identifiers,

formatting and commenting.

 Match Detection:The changed code is contribution to an

appropriate correlation calculation where changed

examination units are contrasted with each other to discover a

match. Some mainstream coordinating calculations are the

addition tree calculation, dynamic example coordinating and

hash-esteemcorrelation.

 Formatting: In this stage, the clone combine list acquired

as for the changed code is changed over to a clone match list as

for the first code base. For the most part, every area of the

clone combine gotten from the former stage is changed over

into line numbers on the first source records[16].

 Filtering: In this stage, false positive clones are sifted

through with manual examination as well as a perception

apparatus.

 Aggregation: keeping in mind the end goal to diminish

the measure of information or to play out certain

investigation, the clone sets are collected to bunches, classes,

inner circles of clones, or clone bunches and soforth.

V. CONCLUSION

Code cloning is aprocess of reusing the code as it is or with

several modifications. Code clone recognition is a specialty of

recognizing the substance comparability between the projects or

WebPages. An endeavor is made to plan a strategy called "SD

Code Clone Detection" for both static and dynamic WebPages. It

depends on levenshtein's approach. This strategy contains a few

stages like, parsing and investigation, tree development, code

similitude measure and clone identification.Investigations of

clone serve a key part in appreciation and tending to cloning

issues in software, In this paper we depicted a systematic written

work review that we coordinated to inspect the current situation

with data about clone headway We ‘ve examined several papers

to explore various tools and techniques used for clone

detection.Code clones are indistinguishable fragment of source

code which may be embedded deliberately or inadvertently.

Reusing code pieces through reordering with or without minor

adjustments is general undertaking in programming

advancement. In any case, the presence of code clones may

decrease the outline structure and nature of programming like

variability, meaningfulness and viability and consequently

increment the continuation charges. It can implement in proposed

work with create a new tool that is code optimized manager. In

this research work enhance the performance parameters like time

complexity and accuracy with optimized SVMalgorithm.

REFERENCES
[1] R. Koschke, Survey of research on software clones, in:

Duplication, Redundancy, and Similarity in Software,

Dagstuhl Seminar Proceedings, 2007, p.24.

[2] C.K. Roy, J.R. Cordy, A Survey on Software Clone Detection

Research, TechnicalReport 2007-541, Queen’s University at

Kingston Ontario, Canada, 2007, p. 115.

[3] B. A. Kitchenham, S. Charters, Guidelines for performing

systematic literature reviews in software engineering.

Technical Report EBSE- 2007-01, School of Computer

Science and Mathematics, KeeleUniversity, Keele and

Department of Computer Science, University of Durham,

Durham, UK, 2007, p.65.

[4] G. Antoniol, G. Cassaza, M. Di Penta, E. Merlo, Modeling

clones evolution through time series, in: Proceedings of the

17th International Conference on Software Maintenance

(ICSM ’01), 2001, pp.273–280.

[5] BellonS et.al. Comparison and evaluation of clone detection

tools. IEEE Transactions on Software Engineering

vol33(9)(2007),pp.577- 591.

[6] AndrianMarcuset.al. Identification of high- level concept

clones in source code. In: Proceedings of the 16th annual

international conference on automated software engineering

(ASE 2001). Piscataway: IEEE(2001), pp.107- 114.

[7] Jiang L, Misherghi G, Su Z, Glondu S. 2007. Deckard:

scalable and accurate tree-based detection of code clones. In:

Proceedings of the 29th international conference on software

engineering (ICSE). Piscataway: IEEE(2007),pp. 96-

105.

[8] S. Ducasse, M. Rieger, S. Demeyer, A language independent

approach for detecting duplicated code, in: Proceedings of the

15th International Conference on Software Maintenance

(ICSM’99), Oxford, England, UK, 1999, pp. 109–119.

[9] Tool

Simian<http://www.harukizaemon.com/simian/index.html>(a

ccessed April2012).

[10] S. Lee, I. Jeong, SDD: High performance code clone detection

system for large scale source code, in: Proceedings of the

http://dl.acm.org/author_page.cfm?id=81100583780&coll=DL&dl=ACM&trk=0&cfid=731058747&cftoken=72000655
http://www.harukizaemon.com/simian/i

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 2 392 – 399

399

IJFRCSCE | February 2018, Available @ http://www.ijfrcsce.org

Object Oriented Programming Systems Languages and

Applications Companion to the 20th annual ACM

SIGPLAN conference on Object-oriented programming,

systems, languages, and applications (OOPSLA

Companion ’05), San Diego, CA, USA, 2005, pp.140–

141.

[11] T. Kamiya, The Official CCFinderX

website<http://www.ccfinder.net>(accessed April2012).

[12] K. Kontogiannis, R. Demori, E. Merlo, M. Galler, M.

Bernstein, Pattern matching for clone and concept

detection, Automated Software Engineering 3 (1–2)

(1996).pp.77–108.

[13] F Deissenboeck et.al. Challenges of the dynamic

detection of functionally similar code fragments. In:

Proceedings of the 16th European conference on

software maintenance and reengineering (CSMR).

Piscataway: IEEE(2012),pp.299-308.

[14] M. Bruntink, A. van Deursen, R. vanEngelen, T. Tourwe,

On the use of clone detection for identifying crosscutting

concern code, IEEE Transactions on Software Engineering

31 (10) (2005) ,pp.804–818.

[15] J. Mayrand, C. Leblanc and E. Merlo. Experiment on the

Automatic Detection of Function Clones in a Software

System Using Metrics, in: Proceedings of the 12th

International Conference on Software Maintenance,

ICSM 1996, pp. 244-253.

[16] M. Kim, L. Bergman, T. Lau, D. Notkin, An Ethnographic

study of copy and paste programming practices in OOPL,

in: Proceedings of 3rd International ACM-IEEE

Symposium on Empirical Software Engineering

(ISESE’04), Redondo Beach, CA, USA, 2004, pp. 83–92.

[17] Kodhai, Egambaram, and SelvaduraiKanmani. "Method-level

incremental code clone detection using hybrid approach."

International Journal of Computer Applications in Technology

54, no. 4 (2016):279-289.

[18] Yu, Dongjin, Jie Wang, Qing Wu, Jiazha Yang, Jiaojiao

Wang, Wei Yang, and Wei Yan. "Detecting Java Code Clones

with Multi- granularities Based on Bytecode." In Computer

Software and Applications Conference (COMPSAC), 2017

IEEE 41st Annual, vol. 1, pp. 317-326. IEEE,2017.

[19] Dang, Yingnong, Dongmei Zhang, Song Ge, Ray Huang,

ChengyunChu, and Tao Xie. "Transferring code-clone

detection and analysis to practice." In Proceedings of the 39th

International Conference on Software Engineering: Software

Engineering in Practice Track, pp. 53-62. IEEE Press, 2017.

[20] Jadon, Shruti. "Code clones detection using machine learning

technique: Support vector machine." In Computing,

Communication and Automation (ICCCA), 2016 International

Conference on, pp. 399-303. IEEE,2016.

[21] Sheneamer, Abdullah, and JugalKalita. "Code clone detection

using coarse and fine-grained hybrid approaches." In

Intelligent Computing and Information Systems (ICICIS),

2015 IEEE SeventhInternationalConferenceon,pp.472- 480.

IEEE, 2015.

[22] Roy, Chanchal K., MinhazF. Zibran, and Rainer Koschke.

"The vision of software clone management: Past, present, and

future (keynote paper)." In Software Maintenance,

Reengineering and Reverse Engineering (CSMR-WCRE),

2014 Software Evolution Week-IEEE Conference on, pp. 18-

33. IEEE, 2014.

http://www.ccfinder.net/

