
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 37 –40

37

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

Secured and Adaptive Load Balancing with Backup Approach for Computational

Grids

Dr. B.Jayanthi, Mr.S.Vijayakumar

Department of Computer Science(P.G.)

Kongu Arts and Science College(Autonomous)

Erode, Tamilnadu, India

sjaihere@gmail.com,sakthiveluvijayakumar@gmail.com

Mr. M. Chandru

Department of Computer Science

Kongu Arts and Science College(Autonomous)

Erode, Tamilnadu, India

emchandru@gmail.com

Abstract—Load Balancing is one of the big issues in Grid Computing.This work aims to develop a secured load balancing algorithm which

reduces the download time, network overhead and improve the packet delivery ratio of the resources. This work enhances the PWSLB algorithm

for load balancing, fault tolerant scheduling and security. The experimental results show an average of 0.2 to 8 % increase in Packet delivery

Ratio and 0.080 to 0.1 % of network overhead reduction at 0.1324 milliseconds reduction in Download time. Finally this work Reduces, the

download time, network overhead of tasks and also increases the packet delivery ratio

Keywords- Grid computing, Load balancing, Fault tolerant scheduling, security

__*****___

I. INTRODUCTION

Grid computing is a collection of computer resources from

multiple locations to reach a common goal. The grid can be

thought of as a distributed system with non-interactive

workloads that involve a large number of files. Grid

computing has an emerged as the next generation of parallel

and distributed computing methodology that aggregates

dispersed heterogeneous resources for solving various kinds of

large scale applications in science, engineering and commerce

[9]. Load Balancing is one of the big issues in Grid Computing

[1]. Load balancing Algorithm types and three policies are

Information policy, Triggering Policy, and Selection Policy in

Grid Environment are discussed in [10], [6]. In general load

balancing algorithms can be classified as centralized or

decentralized, and static or dynamic. In the centralized

approach one node in the system acts as a scheduler and makes

all the load balancing decisions. Information is sent from the

other nodes to this node. In the decentralized approach [8], all

nodes in the system are involved in the load balancing

decisions. Many fault-tolerant schemes have been proposed

for grid systems [2], [3], and [7]. Backup overloading to

reduce replication cost of independent jobs introduced in [5].

SHA-3 preserves the online nature of SHA-2. That is, the

algorithm process comparatively small blocks (512 or 1024) at

a time instead of requiring the entire message to be buffered in

memory before processing it [4].

II. MATERIALS AND METHODS

A. Piggybacking

In this study, piggybacking technique is introduced

for load balancing. Each resource maintains the load

information of other resources by using the state object. The

state object helps a resource to estimate the load and efficiency

of other resources at any time without message transfer. Each

item in state object of neighbor or partner resource has a

property list such as load, efficiency, time. Load denotes the

load information of neighbor or partner resource, efficiency

denotes the efficiency value of neighbor or partner resource,

time denotes the neighbor’s or partner’s local time. When the

load information or efficiency value is reported, each resource

collects and maintains the load information of only its

neighbor’s and partner’s. In order to minimize the overhead of

information collection, load information exchange is done by

piggybacking. Specifically, when resource transfers a packet

to neighbor or partner resource for processing, resource

appends the load information and efficiency values of itself, its

neighbors, its partners to the packer and sent to neighbor or

partner resource by piggybacking. Neighbor or partner

resource updates the corresponding load information and

efficiency values of its state object by comparing the

timestamps if the resource contained in the packet belongs to

its neighbors or partners. Similarly, neighbor or partner

resource inserts the current load information and efficiency

values of itself, its neighbors and its partners in the

acknowledgement to resource. So resource can update its state

objects. An advantage of piggybacking strategy reduces the

message overhead and can takes small amount of network

bandwidth. In this way, the load information packet should be

simple and small sized as possible.

B. Boundary Schedules

Fault tolerant scheduling is an imperative step for large scale

computational grid systems, as often geographically

distributed nodes co-operate to execute a job [3]. Primary-

backup approach is a commonly used for fault tolerance

wherein each packet has a primary copy and backup copy on

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 37 –40

38

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

two different processors. This method is used to find the

scheduling time of the backup copy. Scheduling the backup of

job with its start time and/or finish time collide with

boundaries of the interval or boundaries of over loadable

backup schedules is referred to as a boundary schedule. A

schedule is eligible if it is within the time and does not overlap

with any primary schedule or non over loadable backup

schedule as shown in Fig.1. The pseudocode for boundary

schedule is,

Boundary Schedule (ts(ji))

(1) If schedule eligibility(ts(ji))=true

(2) Then

(3) Cost <——— replication cost(ts(ji))

(4) EndIf

(5) If cost is less than R
R
(ji) or they are equal and (ts(ji))

+(te(ji)) is Less than t
Bf

(ji) then

 (6) CB (ji) <————ci

 (7) R
R

(ji) <———cost

 (8) t
Bf

(ji) <———(ts(ji)) +(te(ji))

(9) EndIf

Fig. 1 Pseudocode for boundary schedule

C. Hash Encryption

Hash algorithms are used to map binary values of an

arbitrary length to small binary values of a fixed length,

known as hash values. A hash value is a numerical

representation of data. Sender would write a message, and then

create a hash of that message by using the selected algorithm.

If the hashes match, Receiver knows two things: 1.The

message was not altered. 2. The sender of the message is

authentic. This method prevents message tampering by

preventing anyone from modifying the hash value. Although

the message and its hash can be read by anyone, the hash value

can be changed only by Sender. An attacker who wants to

impersonate Sender would require access to Sender’s Web

site. None of the previous methods will prevent someone from

reading Sender’s messages, because they are transmitted in

plaintext. Full security typically requires digital signatures

(message signing) and encryption.

D. PWSLB algorithms analysis

The grid scheduler selects a neighboring resource for

processing from the state object. This is done by obtain the

corresponding transfer delay. The efficiency value of the

processor and load of the processor and completion time of the

processor are selects from the state object list. Then the grid

scheduler updates the nearest resource with effective and sent

to the nearest resource by piggybacking load information.

Primary and backup approach is used for distributed fault

tolerance. Backup copy of the resource is activated when the

primary copy of the resource failure. Scheduling the backup

copy is calculated using the boundary schedules. The message

is padding and hashing using SHA-3 algorithm [4]. Then

concatenate the message and forward the message.

III. EXPERIMENTAL RESULTS

This research is implemented in the NS2 simulator. This

research focused results relating to objective metrics,

according to various numbers of tasks and nodes. The result of

this research is analyzed in graph. The graph, that provides the

comparison of AOMDV, PDLB and proposed PWSLB. Packet

delivery ratio analysis in fig.2 and that value of comparison in

table 1, download time analysis in fig.3 and that value in table

2 and network overhead analysis in fig.4 and that comparison

values in table 3.

A. Packet Delivery Ratio analysis (No Units)

This metric gives us an idea of how well the PWSLB is

performing in terms of packet delivery at different speeds

using different traffic models. Mathematically, PDR can

define as,

Fig. 2 AOMDV Vs PDLB Vs PWSLB

No of

Nodes

AOMDV

(%)

PDLB

(%)

PWSLB

(%)

25 0.87862 0.89992 0.91012

50 0.81791 0.89105 0.90012

75 0.76454 0.84022 0.87511

100 0.71034 0.80339 0.83823

Table 1: Comparison of AOMDV, PDLB, PWSLB for

PDR

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 37 –40

39

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

B. Download Time analysis (micro seconds)

The average time it takes a data packet to reach the

destination. This includes all possible delays caused by

buffering during route discovery latency, queuing at the

interface queue. This metric is calculated by subtracting time

at which first packet was transmitted by source from time at

which first data packet arrived to destination. Mathematically,

it can be defined as:

 AVG. DOWNLOAD TIME

Fig. 3 AOMDV Vs PDLB Vs PWSLB

Table 2: Comparison of AOMDV, PDLB, PWSLB for

PDR

No of

Nodes

AOMDV

(mic sec)

PDLB

(mic sec)

PWSLB

(mic sec)

25 0.9062 0.899068 0.897071

50 0.9360 0.920664 0.910561

75 0.9542 0.941723 0.93860

100 0.9869 0.978700 0.968561

C. Network overhead analysis (No Units)

Network overhead is defined as amount of non data packets

sent to maintain the grid setup and perform load balancing

tasks. Network overhead is also called a control overhead.

Fig. 4 AOMDV Vs PDLB Vs PWSLB

No of Nodes AOMDV PDLB PWSLB

25 880 805 832

50 1127 978 1118

75 1309 1244 1368

100 1513 1464 1561

Table 3: Comparison of AOMDV, PDLB, PWSLB for

NOH

IV. DISCUSSION

In Fig.2, AOMDV is Adhoc On demand Multipath Distance

Vector routing without secured load balancing and fault

tolerance. PDLB is the Performance Driven Load balancing

without security. PWSLB is a performance weight based

secured load balancing. The average packet delivery ratio

curves of different approaches show that, only PWSLB

achieve fairness during different node scales. The AOMDV

method works on without load balancing and fault tolerance.

So the PDR is lower than the PDLB and PWSLB. The PDLB

can balance the load. However, its ratio is lower than the

proposed approach and may result in over utilization or under

utilization of some resources. This is because, PDLB have no

fault tolerance and security. On the other hand, the proposed

approach PWSLB is the fault tolerance and security so the

packets sent to the processor securely and tolerating the faults.

So the packet delivery ratio is improved by comparing others

as shown in table 1. In Fig.3 AOMDV consistently shows the

highest download time because it works without load

balancing. So the download time of the packets is higher.

PDLB has the lowest download time compared to the

AOMDV. But the enhanced PWSLB has the lowest download

time compared to the others as shown in table 2. In Fig.4

Network overhead of PDLB is reduced compared to the

AOMDV in 25 nodes. Because AOMDV is focused on

without load balancing so overhead is increased. But PDLB is

focused load balancing but no security so less routing packets

compared to the PWSLB. But in 75 and 100 numbers of nodes

PWSLB overhead is increased compared to the AOMDV and

PDLB. So in PWSLB, the network overhead in increased

when the number nodes increased as shown in table 3.

V. CONCLUSION

The PWSLB algorithm is developed to address the

following objectives, 1.Reducing, whenever possible, the

download time, network overhead of tasks submitted to the

processor. 2. Increasing the packet delivery ratio. 3.

Respecting the constraints of security for packets.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 37 –40

40

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

 REFERENCES

[1] Daphne Lopez, S. V. Kasmir raja,‖ A Dynamic Error Based Fair

Scheduling Algorithm for a Computational Grid‖, Journal of

Theoretical and Applied Information Technology - 2009 JATIT.

[2] G. Manimaran and C.S.R. Murthy, ―A Fault-Tolerant Dynamic

Scheduling Algorithm for Multiprocessor Real-Time Systems

and Its Analysis,‖ IEEE Trans. Parallel and Distributed Systems,

vol. 9, no. 11, pp. 1137-1152, Nov. 1998.

[3] R.A. Omari, A.K. Somani, and G. Maninaran, ―A New Fault-

Tolerant Technique for Improving Schedulability in

Multiprocessor Real-Time Systems,‖ Proc. Int’l Parallel and

Distributed Processing Symp. (IPDPS), 2001.

[4] William Stallings, ―cryptography and network security:

principles and practice‖, fifth edition, published by Pearson

education,inc, publishing as prentice hall, 2011.

[5] Geoffrey Falzon, M. L. (2010). ―Enhancing list scheduling

heuristics for dependent job scheduling in grid computing

environments‖ J Supercomput.

[6] S. Ghosh, R. Melhem, and D. Mosse, ―Fault-Tolerance through

Scheduling of Aperiodic Tasks in Hard Real-Time

Multiprocessor Systems,‖ IEEE Trans. Parallel and Distributed

Systems, vol. 8, no. 3, pp. 272-284, Mar. 1997.

[7] J.H. Abawajy, ―Fault-Tolerant Scheduling Policy for Grid

Computing Systems,‖ Proc. Int’l Parallel and Distributed

Processing Symp. (IPDPS), 2004.

[8] Grosu, D., Chronopoulos, A.T.‖ Noncooperative load balancing

in distributed systems‖, Journal of Parallel Distrib. Comput.

65(9), 1022–1034 (2005).

[9] M.Kamarunisha, S.Ranichandra, T.K.P.Rajagopal,‖ Recitation

of Load Balancing Algorithms In Grid Computing Environment

Using Policies And Strategies An Approach,‖ International

Journal of Scientific & Engineering Research Volume 2, Issue 3,

March-2011

[10] Bora Uar, Cevdet Aykanat, K. K. M. I. (2006). Task assignment

in heterogeneous computing systems. J. Parallel Distrib.

Comput., 66, 32–46.

