
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 195 – 200

195

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

Optimal Approach to Compute Metrics for Structural and Behavioural Diagrams

of UML using Program Slicing Techniques

Er. Daljeet Singh

Department of Computer Science and Engineering

Guru Nanak Dev Engineering College

Ludhiana, Punjab, India

E-mail:diljitsingh007@gmail.com

Dr. Harmaninder Jit Singh Sidhu

Department of Computer Applications

Desh Bhagat University

Mandi Gobindghar, Punjab, India

E-mail:jeetsinder@gmail.com

Abstract— We have purposed an optimal approach for computing the various complexity metrics for different UML diagrams by using the

program slicing techniques. Firstly, we draw the UML diagrams in Argo UML software then XML file is generated then by using the SD

Metrics Tool different parameters were calculated automatically. The dependency graph is drawn then the slicing criteria is adopted by using our

purposed algorithm then complexity metrics were calculated. After applying the program slicing techniques the complexity of any diagram will

be decreased and will easier for testability, maintainability, readability, and modularity.

Keywords-UML diagrams;metrics;dependency graph;program slicing;XML

__*****___

I. INTRODUCTION TO UML DIAGRAMS

A Unified Modeling Language (UML) diagram is a graphical

representation of a model of a system which partially signifies

the design and implementation. UML diagrams contain the

elements: - UML nodes that are connected with edges and also

known as paths. The UML model might also contain other

documentation like use cases. The diagram is defined by the

graphical symbols represented on the diagram. A diagram

where the primary symbols in the contents area are classes is a

class diagram. A diagram which shows use

cases and actors is use case diagram. A diagram shows the

sequence of message exchanges between objects is called

sequence diagram. UML specification classified different

kinds of diagrams, e.g. the combination of structural and

behavioural elements helps to show a state machine nested

inside a use case diagram. At the same time, some UML

Tools do restrict set of available graphical elements which

could be used when working on a specific type of diagram.

Consequently, the boundaries between the varieties of

diagrams are not strictly enforced.

Structural diagrams show the static structure of the system and

its parts on different abstraction and implementation levels and

show us how they are related to each other. The elements in a

structure diagram represent the meaningful concepts of a

system and may include implementation concepts, abstract and

real world. Structure diagrams are not utilizing time-related

concepts it does not show the details of the dynamic behaviour

of the circumstances. However, they may show relationships

to the behaviours of the classifiers permitted in the structure

diagrams.

The class diagram is a static structure diagram which

represents the structure of a system at the level of classifiers.

The UML diagrams could be categorized hierarchically as

shown in figure 1, Classification of UML diagrams. Some

classifiers of the system, components or subsystem, different

relationships between their attributes, classifiers, operations

and constraints.

Figure 1 Classification of UML diagrams.

Behavioural diagrams show the dynamic behaviour of the

objects in a system, which is used to represent as a series of

changes to the system over the time. Use cases diagrams and

Behavior diagrams are used to describe a set of use cases or

actions that some system should perform in collaboration with

one or more external users of the system or to provide some

observable and valuable results to the actors. A number of

changes to the system over the time implemented according to

the need.

II. RELATED WORK

In this section, we briefly review the related work on the

importance of UML metrics. Most of our work reported in

metrics importance, technique and need for the UML

structural and behavioural diagrams of UML.

Garg Sushil et al. [15] purposed the aspect-oriented

programming which is a new paradigm for improving the

system’s features such as modularity, readability and

maintainability. Aspect-oriented software development is a

new technique to support the concerns in software

development. Coupling is an internal software attribute that

can be used to indicate the degree of interdependence among

the components of a software system.

mailto:jeetsinder@gmail.com

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 195 – 200

196

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

R. Mall et al. [16] propose a technique for static slicing of

UML models. First, transform software architecture specified

using UML into an intermediate representation named Model

Dependency Graph (MDG). Model Dependency Graph

(MDG) combines information of sequence diagrams along

with the relevant information of the model. For a given slicing

criterion, slicing algorithm traverses the constructed MDG to

identify the relevant model elements. Algorithm’s novelty lies

in its computing a slice-based UML model.

Sikka Preeti et al. [17] program slicing is proved in breaking

down the large program into the small relevant parts that is

needed as per the specified criteria. The objective of this paper

is the betterment of existing program slicing techniques.

Method / statistical analysis the methodology is proposed to

start slicing the software from designing the various levels of

the model and continue it with source code level.

Verma Pretty et al. [12] for measuring the software,

appropriate metrics are needed. To attain the various

qualitative and quantitative aspects of software. To measure

the software in terms of quality, size, efforts, efficiency, and

reliability, performance etc. there are different metrics

available in software engineering and it has been an area of

interest for the various researchers. Measures of specific

attributes of the process, project and product are used to

compute Software metrics. This work proposes a similar

approach of measuring software using various UML diagrams

and applied Software size metric to evaluate the size of the

Software.

All of the above authors and number of other authors had

proposed and implemented the techniques for calculating the

metrics for one of UML diagram but we had purposed as well

as implemented the best optimal technique other than the

above authors for structural as well as behavioral diagrams to

reduce the testability as well as maintainability of the

software.

III. UML METRICS

There are different types of UML Metrics used for

computations for calculating selected qualities, complexities

and sizes as described below:-

A. UML Design Complexity Metrics

B. UML Design Quantity Metrics

C. UML Design Size Metrics

A. UML Design Complexity Metrics

Design complexity metrics are computations for calculating

selected complexities. Complexity is defined as the relation of

entities to relationships. The size of a set is determined by the

number elements in that set. The complexity of a set is a

question of the number of relationships between the elements

of that set. The more connections or dependencies there are

relative to the number of elements, the greater the complexity.

Various types of UML Design Complexities are:

a) Object Interaction Complexity

b) Class Hierarchical Complexity

c) Class Data Complexity

d) Class Functional Complexity

e) Object State Complexity

f) State Transition Complexity

g) Activity Control Flow Complexity

h) Use Case Complexity

i) Actor Interaction Complexity

j) Overall Design Complexity

The complexity of a single entity is determined by the number

of sub-entities relative to the number of relationships between

those sub-entities.

B. UML Design Quality Metrics

The Design Quantity Metrics counts of the diagram and model

the types contained in the UML model. The model types are

further subdivided into two counts:-

 The Design Entity Counts.

 The Design Relationship Counts.

The design diagram type counts are: Use case diagrams,

activity diagrams, class diagrams, sequence diagrams,

interaction diagrams, state diagrams, component diagrams,

distribution diagrams. Various types of UML design quality

metrics are:

a) Degree of Class Coupling

b) Degree of Class Cohesion

c) Degree of Modularity

d) Degree of Portability

e) Degree of Reusability

f) Degree of Testability

g) Degree of Conformity

h) Degree of Consistency

i) Degree of Completeness

j) Degree of Compliance

The design entity type counts are: Sub-systems, use cases,

actors, components, interfaces, classes, base/superclasses,

methods, parameters, attributes, activities, objects, states,

rules, stereotypes, design entities, and design entities

referenced.

The design relationship type counts are Usages, associations,

generalizations, interactions, class hierarchy levels, method

invocations, activity flows, state transitions, and test cases.

The design quality metrics are computations for calculating

selected qualities. The closer the model is to fulfilling that

standard, the higher is its quality.

Quality is defined here as the relation of that state the model.

Quality measurement presupposes a standard for the UML

model. The actual state of the model is then compared with

that standard. In German the overall design quality can be

simply expressed by the ratio: the upper bound of the metric

is 1. If the IST exceeds the SOLL then the quality goal has

been surpassed. A quotient coefficient of 0.5 indicates median

quality. It should be remembered that quality is relative.

However, in comparison with the ratio derived from another

design in exactly the same way, it indicates that the one

design has a better or lower quality than the other, at least in

respect to the quality characteristic measured. Since there is

no absolute quality scale, the quality of a system design can

only be assessed in relation to the quality.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 195 – 200

197

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

C. UML Design Size Metrics

The design size metrics are computed values for representing

the size of a system. Of course what is being measured here is

not the system itself, but a model of the system. The system

itself will only be measurable when it is finished. Those size

measures can be derived from the requirements by analyzing

the required texts or at design time by analyzing the design

diagrams. Both measurements can, of course, be only as good

as the requirements and/or the design is measured. That means

the original cost estimation has to be based on the

requirements. One needs size measures at an early stage in

order to predict the effort that will be required to produce and

test a system. Since the design is more detailed and more

likely to be complete, the design size metrics will lead to a

more reliable estimate. However, the design is complete much

later than the requirements. If the design based estimation

surpasses the original one, it will be necessary to delete

functionality, i.e. to leave out less important use cases and

objects. If the design based estimation varies significantly

from the original one, it will be necessary to stop the project

and to renegotiate the proposed time and costs. In any case, the

project should be recalculated when the design is finished.

When estimating a project one should always estimate with at

least three different methods. For that reason, five measures

are taken to give the estimator a choice. The five size

measurements taken are:

a) Data-Points

b) Function-Points

c) Object-Points

d) Use Case-Points

e) Test-Cases

IV. EXAMPLE FOR DESIGNING XML SCHEMAS

USING UML DIAGRAM

Unified Modeling Language (UML) is an industry that is used

in modelling business concepts when building the software

systems in an object-oriented manner. XML schemas,

constrain the nature of XML exchanged.XML has gained

ground in becoming a key for these systems in terms of

sending the information and commands.

In Figure 2, BALTIC Shipping which is a shipping company

that transports shipments from the one country to other. It

needs to create a system for tracking shipments from its head

office from one country to its regional offices which were in

other countries. All the orders and confirmation data is

exchanged in XML format and schemas have to be designed to

outline the structure of the documents for all the orders for the

company. The business used to model orders is also used to

exchange information with the “Inventory Tracking System”

which knows which packages the company is holding for

delivery.

Figure 2 BALTIC Shipping workflow

A. UML and its object-oriented modelling can be used to

building XML schemas. The business supervisor of

BALTIC Shipping comes and asks to model the XML

schema that will formalize the information that is

transmitted between different systems in the BALTIC

Shipping company.

In the “UML diagram”, the business of a Shipping Order is

represented in figure 3. In addition, the UML diagram is used

to represent what constitutes an origin place or an order place.

Origin place and destination place types are shown to be the

same as type address of the client, and BALTIC Shipping

stores an address in its database with the following fields:

 Name

 Street

 City

 Country

Figure 3 UML diagram

BALTIC Shipping Company defines a Shipping Order that

must consist of a

 Shipping Id

 Origin

 Destination

 Order
 It considers this information whenever any data regarding a

Shipping Order is exchanged with one another. These are

business techniques and they have been used in their database

models, in their software programs, and in their documents

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 195 – 200

198

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

that are read by supervisor and business team members. The

schemas represent the mapping of the UML diagram to XML

schemas are as follows:-

XML CODE1: SHIPPINGORDER.XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xs:element name="shippingId"type="int"/>

 <xs:element name="origin" type="Origin"/>

 <xs:element name="destination"

type="Destination"/>

 <xs:element name="order" type="Order"/>

 <xs:include

schemaLocation="DataTypes.xsd"/>

 <xs:element name="shippingOrder">

 <xs:complexType>

 <xs:sequence>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The Shipping Order class in UML is assembled and resented

by the complex type “shipping order”, in the schema.

According to the business requirements, a Shipping Order

consists of a

 Shipping Id

 Origin

 Destination

 Order

One thing to note is that input the Origin type along with

other generic types in a Data Types schema in XML code 2. A

Data Types are convenient for storing reusable types, such as

the definition of an Address, which are used in XML

documents.

In the UML diagram, “ Address” is an abstract type as

indicated. The types

 Name

 Street

 City

 Country

XML CODE 2. DATATYPES.XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

<xs:complexType name="Destination">

<xs:complexContent>

<xs:extension base="Address"/>

 </xs:complexContent>

 </xs:complexType>

<xs:complexType name="Order">

<xs:seque

<xs:element name="item" type="Item"

maxOccurs="unbounded"/>

 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Item">

 attributeFormDefault="unqualified">

 <xs:complexType name="Address" abstract="true">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="street" type="xs:string"/>

 <xs:element name="city" type="xs:string"/>

 <xs:element name="country" type="xs:string"/>

 <xs:sequence>

 <xs:element name="description" type="xs:string"/>

 <xs:element name="weight" type="xs:double"/>

 <xs:element name="tax" type="xs:double"/>

If we had started designing the XML schema from starting, it

would have been difficult to just write down all the object

types in XML. In addition, it would be nearly difficult and

impossible to explain them to the business supervisor who is

not familiar with the terminology of XML code. The UML

diagrams, you could translate the business concepts of the

company and then create the XML schemas with this

representation. The instance document for a parcel that is

shipped from one country to another is given the following

schemas.

XML CODE 3. SHIPPINGORDER.XML

<?xml version="1.0" encoding="UTF-8"?>

<shippingOrder

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="C:\schemas\ShippingOrde

r.xsd">

destination>

 <name>Mai Madar</name>

 <street>Liivalaia 33</street>

 <city>Tallinn</city>

 <country>Estonia</country>

 </destination>

 <order>

 <item>

 <description>Ten Strawberry Jam

bottles</description>

 <weight>3.141</weight>

 <tax>7.60</tax>

 </item>

 <shippingId>09887</shippingId>

 <origin>

 <name>Ayesha Malik</name>

 <street>100 Wall Street</street>

 <city>New York</city>

 <country>USA</country>

 </origin>

 </shippingOrder>

XML schemas provide a great deal of richness in formalizing

XML documents and a preliminary analysis shows that most

of the fundamental functionalities of XML schemas can be

represented by UML diagrams.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 195 – 200

199

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

V. PROGRAM SLICING

Program slicing is the computation of the set of programs or

program statements, the program slice that may affect the

values at some point of interest, referred to as a slicing of that

program criterion. Program slicing can be used in debugging

to locate the source of bugs more easily as compared to the

find the bugs in full program. Other applications of slicing

include software optimization, maintenance and program

analysis. There are two types of Program slicing:-

a) Static slicing

b) Dynamic Slicing

(a) Static Slicing

Static slicing is based on the original definition of Weiser,

formally, a “static program slice” S consists of all statements

in program “p” that may affect the value of variable “v” at

some point “p”.

(b) Dynamic Slicing

To make the use of information about a particular execution of

a program. A dynamic slice contains all statements that

actually affect the value “v” of a variable at a program point

“p” for a particular execution of the program rather than all

statements that may have affected the value “v” of a variable

at a program point “p” for any arbitrary execution of the

program.

VI. THE UML CLASS DIAGRAM

The UML class diagram as an example of the Hasp Software

with various attributes and functions in which representation

of main part of the building block.

Figure 4 Class diagram of UML for Hasp Software

In figure 4, the class diagram of Hasp Software is used for

both generals as well as conceptual modelling for the

development of the applications. In this example, the class

diagram for the Hasp Software is represented with the required

attributes and functions with their associations.

Figure 5 Class Dependency Graph (CDG)

In figure 5 Class Dependency Graph (CDG), classes and their

attributes, methods and their call parameters, together with

method return values are represented as different types of

nodes. The data dependencies arise when the class methods, its

parameters and return values directly or indirectly make use of

the class attributes.

Figure 6 Slicing Graph of Class Dependency Graph (CDG)

In figure 6, Slicing Graph of Class Dependency Graph (CDG)

of Hasp Software is generated according to the requirement, in

which customer and teller class are taken as a sliced criterion.

At the same time, Class Dependency Graph (CDG) of Hasp

Software represents class relations in Slice-based cohesion

metrics. Worked examples, illustrating the calculation of slice-

based cohesion metrics for a class dependency graph (CDG) of

Hasp Software, Degree of Cohesion (DCH), Number of

Attributes Used (NAU), Total Number of Attributes (TNA),

Degree of Cohesion (DCH) = NAU/TNA

For computing the Degree of Cohesion (DCH), the

connectivity between the classes and the number of attributes

used by the method of a class. In figure 6, “Slicing Graph of

Class Dependency Graph (CDG)” where two classes were

taken as sliced criteria. The cohesion is interaction within a

class and coupling is the interaction with the other classes.

http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Program_analysis_(computer_science)
http://en.wikipedia.org/wiki/Program_analysis_(computer_science)
http://en.wikipedia.org/wiki/Program_analysis_(computer_science)

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 3 195 – 200

200

IJFRCSCE | March 2018, Available @ http://www.ijfrcsce.org

Always this high cohesion and low coupling are recommended

in the software to develop successful software. In table 1 the

results for the degree of cohesion after the slicing is displayed.

Table 1 Degree of cohesion

Class name NAU TNA DCH

Hasp time 0 9 0

Hasp Software 0 4 0

The degree of coupling in table 2, the ratio of a number of

messages received to the number of the message passed. For

finding the degree of coupling, message received coupling

(MRC) and the message passed coupling (MPC) is used, it is

the number of messages received and passed by a class.

(MRC) Message received coupling is the complexity of

message received by the classes, as MRC is the number of

messages received by a class from the other classes. (MPC)

Message Passed Coupling is denied as the number of the

message passed among objects of the classes. The degree of

coupling is given

Degree of coupling (DC) = MRC/ MPC.

Table 2 Degree of coupling

Class name MRC MPC DC

Hasp time 0 3 0

Hasp Software 1 0 1

U=

tes))ss_Attribus)/(Nr_Cla_AttributeMinimun_Nr*es((Nr_Class

(2)

Class Data Complexity for customer and teller =

2*3/13 = 0.46

VII. FUTURE WORK

The Metrics are used for identifying the design of the software

to be developed for improving the system features such as

readability, testability, modularity and maintainability. We

have proposed a technique to decreasing the complexity of the

software by using the program slicing techniques. We

calculated with the effective utilization of optimized algorithm

implemented in programs slicing techniques. This work can be

extended as automation for the whole process by building a

tool.

REFERENCES

[1] Kumar. S.V and Santosh, “Impact of coupling and cohesion in

object-oriented technology,” Journal of software engineering

and applications, vol. 5, pp. 671-676, 2012.

[2] Kambow. Lavleen and Singh. Daljeet, “Visualizing the

software metrics of state chart diagram using program slicing,”

International journal of applied information system (IJAIS),

ISSN: 2249-0868, foundation of computer science, New York,

USA, Vol. 2, 2013, pp. 9.

[3] Rani. Tincy, Sanyal. Manish and Garg. Sushil, “Measuring

Software Design Class Metrics:- A Tool Approach,”

International journal of engineering research & technology

(IJERT), ISSN: 2278-0181, vol. 1, Issue 7, September 2012.

[4] Virtual Machinery, "Object-Oriented Software Metrics -

Introduction and overview", Virtual Machinery, Link:

http://www.virtualmachinery.com/jhawkmetrics.htm

[5] Kumar. Akhilesh and Khalsa. sunnit kaur, “ Determining

cohesion and coupling for class diagram through slicing

techniques”, IJACE, Vol. 4, No.1, Jan-June 2012,pp. 19-24.

[6] Singh. Daljeet and Kamra. Amit, “ Measuring Software design

metrics of UML Struictural and Behaviourl Diagrms,”

Internationl Journal of computer & Mathematicl Sciences

(IJCMS), ISSN : 2347-8527, Vol. 6, Issue.5, May 2017.

[7] Genero. M.,“ Defining and validating metrics for conceptual

models,” [Ph.D. thesis]. University of Castilla-La Mancha,

2002.

[8] Weyuker, “Evaluating software complexity measures,” IEEE

Transactions on Software Engineering, 14(9),1998, pp.1357-

1365.

[9] Chidamber Shyam, “A metrics suite for object-oriented design”,

IEEE Transactions on Software Engineering, June, 1994.

[10] Seyyed. Mohsen, “Object-Oriented Metrics”, Sharif University

of Technology, International journal of science and research,

Department of Computer Engineering, January 2006.

[11] Mythili. Thirugnanam, “Quality Metrics Tool for Object-

Oriented Programming”, International Journal of computer

theory and engineering, vol. 2, No. 5, October 2010.

[12] Verma. Pretty, “Effect of different UML diagrams to evaluate

the size metrics for different software projects”, Global Journal

of computer science and technology software and engineering,

vol. 15, issue. 8, version 1.0, February. 2015.

[13] Ana. Nicolaescu, “Evolution of Object-Oriented Coupling

Metrics: A Sampling of 25 Years of Research,” RWTH Aachen

Univ., Aachen, Germany Horst Lichter ; Yi Xu, May 2015, pp.

16-18.

[14] Alshammari, “A Hierarchical Security Assessment Model for

Object-Oriented Programs,” Fac. of Science & Technol.,

Queensland Univ. of Technol., Brisbane, QLD, Australia, Colin

Fidge, Diane Corney, July 2011, pp. 13-14.

[15] Garg. Sushil, Kahlon K. S. and Bansal P. K, “How to Measure

Coupling in AOP from UML Diagram” International Journal of

Computer Science and Telecommunications, Volume 2, Issue 8,

November 2011.

[16] Jaiprakash. T. Lallchandani, R. Mall: Static Slicing of UML

Architectural Models, in Journal of Object Technology, vol. 8,

no. 1, January– February 2009, pp. 159–188.

[17] Sikka. Preeti and Kaur. Kulwant, “Mingling of Program Slicing

to Designing Phase” Indian Journal of Science and Technology,

Vol 9(44), DOI: 10.17485/ijst/2016/v9i44/105091, November

2016.

http://www.virtualmachinery.com/jhawkmetrics.htm
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ana%20Nicolaescu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Horst%20Lichter.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yi%20Xu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Bandar%20Alshammari.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Colin%20Fidge.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Colin%20Fidge.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Colin%20Fidge.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Diane%20Corney.QT.&newsearch=true

