
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 158 – 166

158

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

CPN Modelling And Performance Analysis Of CBHSA

Swati Singhal

PHD, Computer Science

Gurukul Kangri University

Haridwar

Aggarwalswati37@gmail.com

Heman Pathak

Associate Professor

Kanya Gurukul Campus

Dehradun

hemanp@rediffmail.com

Abstract— Security is a major issue associated with MAs and Hosts. MAs themselves may need to be protected from the hosts they visit and

vice versa. For mobile multi agents, a new Cryptography Based Hierarchical Security Architecture (CBHSA) has already been proposed in our

previous work. CBHSA provides four different kinds of algorithms to secure agents during migration which combines various existing security

mechanisms such as encryption and decryption, signed agreement etc. This paper gives the description of Colored Petri Net (CPN) modelling of

CBHSA and analyses the performance of CBHSA against some identified parameters. Different graphs have been developed for min, max and

average values of different parameters. Simulation results show that CBHSA gives expected result and secure MAs and hosts from attacks.

Keywords- Mobile Agents, Multi Agent System, Cryptography, Security, CPN Tool.

__*****___

I. INTRODUCTION

Security mechanisms are necessary to safeguard the host’s

resources from the MAs executing on them. Similarly, MAs

themselves may need to be protected from the hosts they visit.

In this paper, CPN modelling of CBHSA for mobile multi

agents has been described. CBHSA combines two different

mechanisms to provide security. The first mechanism uses

cryptography based approaches to allow secure migration of

MAs while second mechanism uses reputation based trust

management to protect hosts and MAs from attacks. CBHSA

presents a new way to compute reputation value of both host

and MAs based either on past experience or experiences of

other trusted and known entities and third party. It combines

various existing security mechanisms such as Intrusion

Detection System, behaviour report analysis and signed

agreement. CBHSA has been modelled using the timed CPN.

Simulation results show that CBHSA can secure MAs and

hosts from attacks but TT and ND increase as malicious rate of

MA and host increases. Incorporating security features add

some overheads but for low malicious rates it is not significant.

II. SECURITY REQUIREMENTS

In order to secure the host and agents from attack of each

other various security measures have been identified by

researchers working in the concerned areas [5][6]. Following

section summarizes the MA security requirements.

A. Agent Authentication and Authorization

The origin and integrity of MAs should be verified, and

agent access to host resources should be subject to an

authorization check.

B. Integrity and Confidentiality

Integrity [7] and confidentiality of information in the host

systems must be preserved by proper access control. An agent

may carry information that needs protection with respect to,

external parties that are not involved in the agent’s operation.

Protection against external parties has two components, one is

protection against eavesdropping and modification when an

agent migrates from one host to another and second is the

protection of the agent when resident on a host.

C. Trust

Agents need to be capable of assessing the trustworthiness

of received information [8] (e.g. by using a reputation system

[9]).

D. Autonomy and migration

An agent should have control over its internal state and

migration. Greater degrees of autonomy and more sophisticated

migration capabilities require higher levels of security as a

result of the increased risks arising from agent code

manipulation.

E. Anonymity

While knowledge of the identity of an agent may be

important for certain applications and services, it may not be

needed by others.

F. Delegation

It must be possible for an agent to be granted rights to carry

out certain tasks on behalf of another entity. The security for

such a delegation act could, for example, be supported by the

use of public key and attribute certificates.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 158 – 166

159

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

III. CBHSA ARCHITECTURE

CBHSA is a framework that combines various existing

security approaches to protect agents in multi agent system.

CBHSA is inspired by the already existing security techniques

including digital signature, encryption, signed agreement etc.

proposed in [1][2]. Cryptography is a mechanism to secure

data. Privacy/confidentiality(C), Authentication (A), Integrity

(I), Non-repudiation (R) and Key exchange (K) are five

primary functions of cryptography today. These functions can

be achieved through various methods starting from physical

securing to the use of mathematical algorithms for data

encryption and decryption. Different kinds of keys (private and

public or shared) are used for these encryption and decryption.

CBHSA uses a hierarchical network environment which works

at three layers (GSP, LSP & PSP). It uses centralized approach

at one level and distributed at other. Network divides the open

network like internet into regions and then assigns the

responsibility to one of the centralized component (router)

within each region to implement features to provide security

for agents executing in its region. Router is an active

component in CBHSA. A MA wishes to visit a host within a

network, first arrives at the router of the network and then

passed to the designated host. Network uses a layered

architecture (3-level). The server at the lowest layer is Personal

Service Provider (PSP), at the middle level Local Service

Provider (LSP) and at the highest level there is Global Service

Provider (GSP). Role of GSP, LSP and PSP has been described

in [3].

Agent Execution, Agent Local Migration, Agent Global

Migration, Agent to Agent Communication algorithms have

been used in CBHSA for secure migration of MA and

communication among MAs in the network, where each

algorithm has two phase encryption and decryption.

IV. PETRI NETS (PNS)

Petri Net or Place Transition Net is a well-known

formalism for modelling concurrency [10]. PN is a directed,

connected, bipartite graph in which each host is either a place

or a transition. Tokens occupy places. When there is at least

one token in every place connected to a transition, the

transition is enabled. Any enabled transition may fire,

removing one token from every input place, and depositing one

token in each output place. PNs have been used extensively in

the analysis of networks and concurrent systems.

PN structure can be represented as a directed bipartite graph

[11]. In a PN graph, places are represented by circles and

transitions by bars or boxes. Places and transitions are

connected with directed arcs. Assignment of tokens to the

places of a PN structure is called its marking and represents the

state of the modelled system at each time instance.

V. COLORED PETRI NETS (CPN)

CPN is a language for modelling and validation of

concurrent and distributed systems and other systems in which

concurrency, synchronisation, and communication plays a

major role. CPN is a discrete-event modelling language

combining PN with the functional programming language

Standard Mark-up Language (ML). PN provide the foundation

of the graphical notation and the basic primitives for modelling

concurrency, communication, and synchronization. Standard

ML provides the primitives for the definition of data types,

describing data manipulation, and for creating compact and

parameters able models [12][13]. CPN models facilitate

simulation, state space analysis, behavioural visualisation, and

simulation-based performance analysis. CPN differs from PNs

in one significant respect; here tokens are not simply blank

markers, but have data associated with them. A token’s color is

a schema, or type specification. Places are then sets of tuple,

called multi-sets.

CPN model of a system is an executable model

representing the states of the system and the events (transitions)

that can cause the system to change state. CPN language makes

it possible to organize a model as a set of modules, and it

includes a time concept for representing the time taken to

execute events in the modelled system. CPN is an industrial-

strength computer tool for constructing and analyzing CPN

models. Using CPN, it is possible to investigate the behaviour

of the modelled system using simulation, to verify properties

by means of state space methods and model checking, and to

conduct simulation-based performance analysis. User

interaction with CPN is based on direct manipulation of the

graphical representation of the CPN model using interaction

techniques, such as tool palettes and marking menus. A license

for CPN can be obtained free of charge, also for commercial

use. Typical application domains of CPNs are communication

protocols [14], data networks [15], distributed algorithms [16],

and embedded systems [17][18]. CPN are, also applicable more

generally for modelling systems where concurrency and

communication are key characteristics. When simulating

CPNs, it is often useful to be able to examine the markings and

occurring binding elements, to periodically extract information

from the markings and binding elements, and then to use the

information for different purposes, such as:

Stopping a simulation when a particular place is empty

Counting the number of times a transition occurs

Updating a file when a transition occurs with a variable bound

to a specific value

Calculating the average number of tokens on a place

A monitor is a mechanism in CPN Tools that is used to

observe, inspect, control, or modify a simulation of CPN

[20][19]. Many different monitors can be defined for a given

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 158 – 166

160

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

net. Monitors can inspect both the markings of places and the

occurring binding elements during a simulation, and they can

take appropriate actions based on the observations.

CPN is a tuple CPN = (∑, P, T, A, N, C, G, E, I):

∑ is a finite set of color types.

P is a finite set of labelled places of type ∑.

T is a finite set of labelled transitions.

A is a finite set of arcs such that: P ∩ T = P ∩ A = T ∩ A = Ø.

N is a node function. It is defined from A into P × T ∪ T × P.

C is a color function. It is defined from P into ∑.

G is a guard function, defined from T to expressions.

E is an arc expression function, defined from A into

expressions.

I is an initialization function, defined from P into expressions.

VI. PROPERTIES OF CPN

Some of the properties which make CPN [21] a valuable

language for the design, specification and analysis of many

different types of systems are-

CPNs have a graphical representation.

CPNs have a well-defined semantics.

CPNs are very general.

CPNs have very few, but powerful, primitives.

CPNs have an explicit description of both states and actions.

CPNs have a semantics which builds upon true concurrency.

CPNs offer hierarchical descriptions.

CPNs integrate the description of control with data

manipulation.

CPNs can be extended with a time concept.

CPNs are stable towards minor changes of the modelled

system.

CPNs have a large number of formal analysis methods.

CPNs have computer tool.

VII. CPN MODELLING OF CBHSA

In order to evaluate the working and performance of

CBHSA, it has been modelled by using CPN. Since the system

model of the network remains same as discussed in [3][4].

Only the additional components related pages and their

descriptions are given in this paper. To the modelling of

CBHSA certain assumptions have been made. In order to

model the cryptography based secure migration of MAs in

LAN and GN, no mathematical details have been given only

time has been added for encryption and decryption. It has also

been assumed that GRT is implemented by one of the host in

the GN and accessible to all hosts of the network and accessing

time is constant. Any host can access or can make an entry in

the table, no security checks has been used to update GRT. A

malicious host is assumed to be recovered and make

trustworthy by network recovery mechanism in finite time.

MAs waiting to be executed on malicious hosts are blocked

until it is recovered and become trustworthy.

VIII. COMPONENTS DESCRIPTION OF CBHSA

A hierarchical CPN has been used to model the CBHSA.

The model uses some fusion places and substitution transitions

for better representation of different components and their

relations in CBHSA. Following section explains the design and

working of each level of the hierarchy as shown in Figure 1.

Figure 1. Page Hierarchy of CPN Model of CBHSA

A. Network Page Router

This network page models the functioning at router as

shown in Figure 2. Components installed at routers are

responsible for receiving/sending MAs and to enforce various

security features of CBHSA. Since some of the places and their

working have already been discussed in [4], this section

explains the role and working of additional places and

transitions only.

1) Working of Network Page Router

Place ReceivedPacket receives a packet from other part of

the network. If target address of the packet is current network,

then a cryptographic decryption DMAC is applied on the

packet and transition Register is fired, which makes an entry in

LogTable, and place the agent at place InBuffer. All MAs

received, as well as created or executed by the hosts within the

network are submitted at place InBuffer.

Received
Packet

Fusion 3

Packet

Fusion 3

MRT

Fusion 2
MRT

[]

Fusion 2

MRV

Agent

Malicious

Agent

Suspicious

Agent

Trusted

Agent

GRT

Fusion 11

MRT

[]

Fusion 11

In Buffer

Agent

[]

Trust
Manager

Agent

Log
Table

LogTable[]

Sent
Packet

Fusion 4

Packet

Fusion 4

MAC

Agent

Mobile
Agent

Agent

DMAC

Agent

Malicious
MA

Fusion 14
Agent

Fusion 14

Executed

Agent

[]

Out
Buffer

Agent

Register
@+(RTime+Ran10.ran())Get

MRV

@+5

[ma=(#1(a)),rv1=(#4(a)),rv2=
gMR(a,mt),rv=(rv1+rv2) div 2]

Check
MRV

@+CMTime [rv=(#4(a))]

Get
GRT

[rv=gGR(a,mt)]

Update
GRT

@+UTime

[ma=(#1(a)),
rv=(#4(a))]

Resolve
Address

@+LTTime

[i=resAdd(agent,(hd (rev (#3(agent)))
div 10))]

New
Agent

Create AgentCreate Agent

Apply
MAC FUN

@+50

Check
Packet

@+(CPTime+Ran10.ran())

[a=(#1(p)),(#3(p))=1,pt=(#4(p))]

Apply DMAC

@+50

HOST

HOST1

@+50

HOST1

Migrate

Apply
DMAC FUN

[3>4]

UMT(ma,rv,mt,[])

mt

Uma(a,rv)

a

if rv<4 then 1`a
else empty

if rv>3 andalso rv<7
then 1`a else empty

if rv>6 then
1`a else empty

a

mt

if rv<>0 then 1`a
else empty

if rv=0 then
1`a else empty

a

mt

agent

if i=1 then
1`agent
else emptya

(a,1,gr(a),2)

(a::
logTable)

logTable

agent

(agent,1,
gr(agent),1)

p

if pt=1 then 1`a else empty

a

a

a

a

if pt=2 then 1`a else empty

UMT(ma,rv,mt,[])

UMT((#1(a)),rv,mt,[])

if i=0 then
1`agent
else empty

if i=2 then
1`agent
else empty

logTable

(agent::
logTable)

agent

agent

Figure 2. CPN Model of Page Router of CBHSA

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 158 – 166

161

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

A token at place InBuffer fires the transition
ResolveAddress, which perform following actions –

1. If target address list is empty, MA has completed

its itinerary and placed at place Executed.

2. If next host to be visited by the MA is in the same

network then agent is passed at place

TrustManager.

3. A token at place TrustManager fires the transition

GetMRV, which collects the RV from local MRT

(if any) and update RV of MA. MA with updated

RV is placed at place MRV.

4. A token at place MRV fires the transition

CheckMRV, which computes the trustworthiness

of MA based on its RV and passes it at place

Trusted, Suspicious or Malicious.

5. A token at Trusted means MA is trusted and

passed to sub-page HOST.

6. A token at place Malicious fires the transition

UpdateGT, which updates the GRT and starts the

recovery.

7. A token at place Suspicious fires the transition

GetGRV, which concerns the GRT to get MA’s

RV.

8. If there is an entry in GRT for MA, it is declared

as malicious and placed at place Malicious. If no

information is available in GRT, an entry is made

in GRT but MA is updated to trusted and passed at

place Trusted.

B. Network Page Host

This network page models the execution of MA at host and

IDS as shown in Figure 3. Its components are responsible for

successful execution of MA. In CBHSA behaviour of host and

executing MAs are recorded during execution of MA and used

to update their RV. To model this concept, random RVs are

generated and modified in each steps of MA execution and

used by transition UpdateRT to update RV of host and MA in

their respective RT after successful execution of MA. This

network page also models the IDS of CBHSA installed at

router. IDS has been modelled by the transition IDS. This

transition periodically creates intruders to observe the

behaviour of randomly selected host. To model the behaviour

report of host by intruders, random RV is generated by

transition CHKbehaviour and host RV is updated in HRT.

1) Working of Network Page HOST

1. A token at place Trusted fires transition

CheckHost, which concerns HRT to check if the

target host is trusted or not.

2. If host is trusted MA is passed to place Executing

else to the place Waiting where MA waits until

target host becomes trusted again.

3. Meanwhile IDS periodically observes the behavior

or hosts and updates their RV. A malicious host is

assumed to be recovered and make trusted again

by network’s recovery mechanism.

4. Token at place Executing, fires the transition

Execute, which model the execution of MA at the

target host. It has been assumed that all MAs

execute in five steps at host.

5. After execution, MA arrives at place Execute and

in turn fires the transition UpdateRT.

6. MA is then placed at place InBuffer to continue its

execution.

CPN'Replications.nreplications 3

Trusted

In
Agent

In

In Buffer

Out

Agent []

Out

HRT

Fusion 1
HRT

1`[(1,5),(2,7),(3,7),(4,7),(5,6),(6,9),(7,9),(8,8),(9,7)]

Fusion 1

Waiting

MA

Agent

Executing

AState

Executed

AState

MRT Fusion 2

MRT

[]

Fusion 2

Intruder

Detector

HostId

1

Check
Host

@+(CHTime+Ran10.ran())

[h=gH(a),rv=gHR(h,ht1)]

wait

@+5

Execute

@+(ETime+Ran50.ran())Update

RT

@+(URTime+Ran10.ran())

[a=(#1(ast)),rv1=(#3
(ast)),rv2=(#4(ast))]

CHKbehaviour

a

ht1

if rv<4 then 1`(a)
else empty

a

a

if rv>3 then 1`
(a,15,(#4(a)),rv) else empty

(a,i,rv1,rv2)

if i>1 then 1`

(a,i-1,gR(a),rv2) else empty

if (i=1) then 1`

(EXE(a,rv1),i,rv1,rv2) else empty

ast

ht

a

mt

UHT(gV(a),hRV(a,ht,rv2),ht,[])

UMT((#1(a)),mRV(a,rv1),mt,[])

UAHT(ht1,[])

ht1

h h@+200

Figure 3. CPN Model of Page Host of CBHSA

IX. PERFORMANCE EVALUATION OF CBHSA

USING MODEL

Before going to discuss performance analysis of CBHSA,

Experimental set up of the model has been made and

parameters for performance analysis have been identified.

A. Experimental Set Up

Performance analysis of CBHSA has been done on the

basis of simulation results obtained from CPN model of

CBHSA. Since timed CPN has been used to model CBHSA,

time is required to be assign to some of the transitions for

evaluation of performance. Before simulation starts, several

parameters are required to be supposed while a few are

generated at random or calculated at some stage in simulation.

Some Random time has been assigned to different transitions.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 158 – 166

162

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

The MA’s itinerary contains 50 randomly selected hosts during

its execution. Table 1 shows the time assign to some of the

transitions of CPN model of CBHSA.

Table 1: Assignment of Different Time Units to different

parameters (CBHSA)

B. Parameters for Performance Analysis

Before using the model to collect results, it needs to be

setup for analysis and parameters also need to be identified for

which model is to be used. Parameters identified for analysis

are defined and discussed here.

1) Trip Time (TT)

When security algorithm is applied, Trip time of MA is:

TT=CT+ (MT+ET)*n+ ENT*p+ DCT*q+ C

Here p is the No. of MA encryption and q is the No. of

decryption. C is a constant that model other factors that may

delay MA’s execution.

2) Network Overhead (ND)

ND is function of the following-

ND =fun (LMC*a, LTO*b, GMC*c, GTO*d)

Here LMC is the local MA migration count, GMC is the

global MA migration count, LTO is the count of local table

accessing, and GTO is the count of global table accessing. Here

a, b, c and d are the weights based on size of packet/message

and type of links.

X. PERFORMANCE ANALYSIS OF CBHSA

This section of the paper observes and analyses the

performance of CBHSA when not all components are trusted.

In order to observe the parameters TT and ND, 100 MAs have

been launched. Itinerary size for each MAs are fixed (i.e. 50), it

includes both local and global hosts. Experiments are repeated

1000 times and minimum, maximum and average cases are

reported. Various such cases are listed below-

A. Case 1: Trip Time Vs Malicious MA Rate

This experiment shows the effect of malicious MAs on

MA’s TT.

Figure 4. Trip Time Vs Increasing Malicious MA

Rate

Once a MA is found malicious, it is blocked and not

allowed to continue its execution. Since malicious MAs are not

able to complete their itinerary, TT for this case does not give a

result that can give a trend to interpret but it verifies that

CBHSA is able to identify the malicious MAs and secure the

hosts from their attack. Figure 4 shows the graph between min,

max and average TT vs. malicious MA rate.

B. Case 2: ND Vs Malicious MA Rate

Figure 5 shows the graph between ND vs. malicious MA

rate. Since malicious MAs terminate premature. ND decreases

as malicious MA rate increases. No specific trend has been

observed.

Figure 5. Local ND Vs. Increasing Malicious MA

Rate

Figure 6. Global ND Vs. Increasing Malicious MA

Rate

Time Variable Declaration Value Declaration

Encryption & Decryption Time,

MA Local Migration Count
50 time units

Local Table access count 10 time units

Global Table access count 20 time units

MA Global Migration Count 100time units

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 158 – 166

163

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Figure 7. Total ND Vs. Increasing Malicious MA Rate

C. Case 3: Malicious MA Vs Host Itinerary Count

In CBHSA when a MA is found suspicious first time it is

allowed to execute but an entry for suspicious MA is made in

GRT. If MA is found suspicious next time it is declared

malicious and blocked. An experiment has been conducted to

find after how many hosts visit an intentionally introduced

malicious MA is identified malicious and blocked. Figure 8

shows the graph between malicious MAs vs. host itinerary

count when introduced malicious MAs detected malicious.

Figure 8. Malicious Agent Vs. Increasing Host

Itinerary Count

It is clear from the graph that CBHSA is able to detect and

block the malicious MAs with in maximum four execution

steps.

D. Case 4: Trip Time Vs Malicious Host Rate

In CBHSA if the target host of MA is found malicious, MA

is blocked and not able to continue its execution. It is

equivalent to premature termination of MA. Figure 9 shows the

graph between TT and malicious host rate for min, max and

average cases. As malicious host rate increases more and more

MA will be blocked and overall TT decreases due to blocking.

Figure 9. MA TT Vs. Increasing Malicious Host Rate

E. Case 5: Network Overhead Vs Malicious Host Rate

Figure 10 and Figure 11 show the graph between ND vs.

malicious Host rate for local and global movements. It is clear

from the graph that ND decreases as malicious host rate

increase. Increased malicious host rate blocks more MAs and

ND decreases due to blocking.

Figure 10. Local ND Vs. Increasing Malicious Host

Rate

Figure 11. Global ND Vs. Increasing Malicious Host

Rate

Figure 12. ND Vs. Increasing Malicious Host Rate

F. Case 6: Number of Blocked MA Vs Malicious Host Rate

Figure 13 shows the graph between no. of blocked MAs

found vs. malicious host rate. It is clear from the graph that as

more and more hosts are behaving maliciously more no. of

agents will get blocked.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 158 – 166

164

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Figure 13. Blocked Agent Count Vs. Increasing

Malicious Host Rate

XI. COMPARATIVE PERFORMANCE ANALYSIS OF

CBHSA

In order to observe the effect of implementing CBHSA on

TT and ND, it is compared with the model which does not

implement any security algorithm i.e. without-CBHSA.

A. Case 1: Trip Time Vs Host Itinerary Size

Since CBHSA performs different steps for inter or intra

region migration, different host addresses (local and Global)

may affect the performance (TT and ND) of the system based

on itinerary of MA.

Figure 14. Comparison of TT between Without-

CBHSA and CBHSA

Figure 14 below shows the comparative graph for without-

CBHSA and CBHSA between TT and No. of visited itinerary

for 100% intra-region migration. All the hosts and MAs are

trusted. It is clear from the graph that TT increases with size of

itinerary. TT for CBHSA is little higher than without-CBHSA

because incorporating the security features delay the execution

of MAs.

Figure 15. Comparison of ND between Without-

CBHSA and CBHSA

B. Case 2: Network Overhead Vs Host Itinerary Size

Figure 15 below shows the comparative graph for without-

CBHSA and CBHSA between ND vs. itinerary size for 100%

intra-region migration when both hosts and MAs are trusted.

For both the models ND increases as the itinerary size

increases. ND in CBHSA is higher than without-CBHSA

because of security measures taken in CBHSA.

XII. CONCLUSION

Security is one of the major barriers that prevent the large-

scale deployment of MAS. Security concerns arise to protect

the agents if the remote systems are malicious. A malicious

MA may attack the hosts which enable it to execute. An agent

can also attack another agent. Previous paper proposed a

CBHSA framework that combines various existing security

approaches to protect agents and hosts. CBHSA uses various

existing security techniques including digital signature,

encryption, intrusion detections, signed agreement, reputation

based trust management, behaviour report analysis etc. to

provide security to both MA and executing hosts. There are

two types of security mechanisms in CBHSA. One is secure

migration of agents in Local Area Network (LAN) and Global

Network (GN) and Reputation and Trust Value computation of

agents & hosts to evaluate the trustworthiness of both. To

secure migration of MA in LAN and GN, Four algorithms

(Agent Execution, Agent Local Migration, Agent Global

Migration and Agent to Agent Communication) have been

proposed, where each algorithm has two phase encryption and

decryption. Use of different keys in CBHSA provides

authentication, confidentiality and Integrity of MA.

CBHSA assumes that routers are trusted while hosts and

MAs may be malicious. In order to detect the malicious hosts

and MAs, their behaviour are observed and analysed. Based on

their behaviour analysis Reputation Values (RVs) are

computed. These RVs are used to evaluate the trustworthiness

of hosts and MAs. If MAs are found malicious, they are

blocked and reported while if a host is detected malicious its

recovery starts by recovery mechanism of the network. In

CBHSA, only trusted MAs are transferred to the host and host

gets protected from the attack of malicious MA. Also during

the execution, behavior of MA is recorded and Check point

Manager saves the MA and its execution state in the LSSS

periodically and MAs RVs have been computed using different

components. Similarly MA is allowed only to be executed on

trusted host; it gets protected from the attack of the malicious

host and Hosts RVs have been computed using different

components.

Host reputation value is computed by the Intrusion

Detection System (IDS), PSP and executing MAs and

incoming and outgoing MAs RVs is computed by PSP and last

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 158 – 166

165

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

visited router only. According to RV of MAs, It is divided into

three parts. Malicious (RV from 0-3), suspicious (RV from 4-6)

and trusted (RV from 7 to high). To compute the RVs for the

MA, observations of each entity interacted with MA must be

compiled. For this reason a GRT is maintained on one of the

network. This table is accessible to all the routers and assumed

to fault free and trust worthy. Since accessing and updating this

table is time consuming and will increase lots of network

traffic, this table only maintains the list of MAs and their RVs

that have been found suspicious or malicious by some watching

entities. This table is concerned only when information

gathered locally or from source router of MA is insufficient to

make decision about the RV of the MA.CBHSA has been

modelled using the timed CPN. Model is verified for its

correctness and using various tools and simulations.

Performance of CBHSA is then observed for identified

parameters such as TT and ND. Simulation results show that

CBHSA can secure MAs and hosts from attacks but TT and

ND increase as malicious rate of MA and host increases.

Incorporating security features adds some overheads but for

low malicious rates it is not significant.

XIII. REFERENCES

[1] Pathak h., “A novel flexible and reliable hybrid approach to

provide security to mobile agents and the executing host”,

proceedings of the international conference on electronics,

information and communication systems engineering (iceice-

2010), jodhpur.

[2] Pathak h., “A novel hybrid security architecture (hsa) to provide

security to mobile agents and the executing host”, proceedings

of the international conference on communication, computing &

security pages 499-502, rourkela, 2011.

[3] Swati Singhal and Heman Pathak,” Cryptography Based

Security Mechanism For Mobile-Multi-Agent Environment”,

research paper published in VSRD International Journal of

Computer Science & Information Technology, Vol. VII Issue XI

November 2017 / 133, e-ISSN: 2231-2471, p-ISSN: 2319-2224.

[4] Heman Pathak & Swati Aggarwal,” Performance Analysis of

Hierarchical Location Management Scheme to Locate Mobile

Agents” paper published in International Journal of Advanced

Research in Computer and Communication Engineering Vol. 5,

Issue 3, March 2016.

[5] H. Reiser and G. Vogt., “Security Requirements for

Management Systems using Mobile Agents”, In S. Tohme and

M. Ulema, editors, Proceedings of the Fifth IEEE Symposium

on Computers & Communications, pages 160–165, Washington,

DC, USA. IEEE Computer Society, 2000.

[6] N. Borselius, “Multi-agent system security for mobile

communication”, PhD thesis, Royal Holloway, University of

London, 2003

[7] Kristian Schelderup, Jon Ølnes, ”Mobile Agent Security – Issues

and Directions”, Research paper published online.

[8] C. Castelfranchi., ”The Role of Trust and Deception in Virtual

Societies,” International Journal of Electronic Commerce,

6(3):55–70, 2002.

[9] M. Schillo, P. Funk, and M. Rovatsos, ”Using Trust for

Detecting Deceitful Agents in Artificial Societies”, Applied

Artificial Intelligence”, 14(8):825–848, 2000.

[10] K. Jensen: High-level Petri Nets. In: A. Pagnoni, G. Rozenberg

(eds.): “Applications and Theory of Petri Nets”, Informatik-

Fachberichte Vol. 66, Springer-Verlag 1983, 166–180.

[11] Heman Pathak, ”Fault Tolerant Execution of Mobile Agent

Systems” Thesis Submitted In Gurukula Kangri University

Haridwar in 2010.

[12] J. Billington, M. Diaz, and G. Rozenberg, editors. “Application

of Petri Nets to Communication Networks”, volume 1605.

Springer-Verlag, 1999.

[13] Kurt Jensen and Lars Michael Kristensen and Lisa Wells,

“Coloured Petri Nets and CPN Tools for Modelling and

Validation of Concurrent Systems” Department of Computer

Science University of Aarhus IT- Parken , Aabogade 34, DK -

8200 Aarhus N , DENMARK.

[14] J. Billington, G. E. Gallasch, and B. Han., “A Coloured Petri Net

Approach to Protocol Verification”, In J. De-sel, W. Reisig, and

G. Rozenberg, editors, Lectures on Concurrency and Petri Nets -

Advances in Petri Nets. Proc. of 4th Advanced Course on Petri

Nets, volume 3098 of Lecture Notes in Computer Science, pages

210–290. Springer-Verlag, 2004.

[15] Karnik, N. and Tripathi, A., ”A security Architecture for MAs in

Ajanta,” in proceedings of the 20th International Conference on

Distributed Computing Systems (ICDCS 2000), Taipei, Taiwan,

pp. 402-409, April 10-13, 2000.

[16] W. Reisig, “Elements of Distributed Algorithms: Modelling and

Analysis with Petri Nets”, Springer-Verlag, 1998.

[17] A. Yakovlev, L. Gomes, and L. Lavagno, “Hardware Design and

Petri Nets. Springer, 2000.

[18] M. A. Adamski, A. Karatkevich, and M. Wegrzyn, editors,

”Design of Embedded Control Systems”, Springer, 2005.

[19] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads

Laursen, Jacob Frank Qvortrup, Martin Stig Stissing, Michael

Westergaard, Søren Christensen, and Kurt Jensen, "CPN Tools

for Editing, Simulating, and Analysing Coloured Petri Nets" in

ICATPN 2003, LNCS 2679, pp. 450–462, 2003.c Springer-

Verlag Berlin Heidelberg 2003.

[20] www.daimi.au.dk/CPNTools/.

[21] Kurt Jensen and Lars Michael Kristensen and Lisa Wells,

“Coloured Petri Nets and CPN Tools for Modelling and

Validation of Concurrent Systems” Department of Computer

Science University of Aarhus IT- Parken , Aabogade 34, DK -

8200 Aarhus N , DENMARK.

http://www.daimi.au.dk/CPNTools/

