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Abstract— Recommendation systems are used widely to provide personalized recommendations to users. Such systems are used by e-commerce 

and social networking websites to increase their business and user engagement. Day-to-day growth of customers and products pose a challenge 

for generating high quality recommendations. Moreover, they are even needed to perform many recommendations per second, for millions of 

customers and products. In such scenarios, implementing a recommendation algorithm sequentially has large performance issues. To address 

such issues, we propose a parallel algorithm to generate recommendations by using Hadoop map-reduce framework. In this implementation, we 

will focus on item-based collaborative filtering technique based on user's browsing history, which is a well-known technique to generate 

recommendations. 
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I.  INTRODUCTION 

A. Recommendation System : 

Recommendation systems [3] are part of information filtering 

system which aims at predicting the preference the user would 

give to an item. Recommendation systems have changed the 

way websites interact with their users. They eliminate the 

static experience, in which users search for static information 

for potentially buying products, by increasing interaction 

among users to provide rich user experience dynamically. 

Recommendation systems derive recommendations for each 

individual user based on their past purchases, searches and on 

other users' purchase and search behaviours. Recommendation 

systems personalize the experience of each user by 

randomizing content that is particularly relevant to their 

experienced interests, instead of providing a static experience 

to every user. Recommendation systems can be extremely 

effective on large scale if they are implemented correctly. 

Many of the world's top used websites, such as Facebook, 

Twitter, LinkedIn, Amazon etc. use recommendation systems 

to engage their users with relevant content. 

B. Collaborative Filtering: 

Collaborative filtering is the most successful recommendation 

system technique till date. It is used in many of the most 

successful recommendation systems on the web. Collaborative 

Filtering systems recommend products to a target user based 

on the behaviours of other users. Collaborative filtering 

systems uses statistical techniques to and a set of users known 

as 

Neighbours, that have a similar experiences as that of the 

target user i.e. either they have rated different products 

similarly or they tend to buy similar set of products or either 

they have watch same set of movies or listened to similar kind 

of music. Once a neighbourhood of users is formed, the 

system uses several algorithms to derive recommendations. In 

order to understand the algorithm and the recommendation 

process, its good to introduce basic terms and then get familiar 

with approaches, methods, tasks, challenges and evaluation of 

recommendation systems. Items and users are the two 

important entities engaged in every recommendation system. 

An item refers to any product such as a music song, a movie, a 

product, an article that recommendation system is to 

recommend. User is a person ready to accept 

recommendations when providing opinions about various 

items. The goal of collaborative filtering algorithms is to either 

make suggestions about new items or to make prediction about 

the acceptance of a certain item for recommendations when 

providing opinions about various items. In addition, it even 

aims to either make suggestions of new items or to make 

prediction about the acceptance of a certain item for a 

particular user based on users past experiences and similarity 

with others users. Prediction is a numeric value expressing the 

affinity of an item for the active user. Recommendation is a 

list of items that the active user will like the most. This is also 

known as top N recommendations where the list contains top 

N liked items [3]. 

C. Hadoop Map-Reduce Framework: 
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Map-Reduce [3] is a programming framework designed for 

processing large amounts of data, in parallel, by dividing a 

complete task into a set of independent tasks where each 

independent task performs the similar computation. The data 

in the map-reduce framework is not shared across the nodes. 

Instead, the data elements in the map-reduce are immutable 

i.e. the data once written cannot be written twice and it can 

only be read many times. All the data used as an input and the 

resultant data post processing is stored in HDFS (Hadoop 

Distributed File System). The data read from the input les, 

stored in HDFS are processed and converted into intermediate 

results and are further processed to generate final results. 

II. LITERATURE SURVEY 

The paper [1] proposes an algorithm for generating 

recommendations based on typicality.  

 

To model this behavior, following traditional collaborative 

filtering assumptions, we define the following two 

assumptions based on user taste: 

1. If people with similar taste to ua like ur, ua will like ur; 

2. If people with similar taste to ur like ua, ur will like ua 

 

Since both assumptions lead to the same predicted selections, 

therefore, ur should be recommended to ua when ur likes 

people with similar attractiveness to ua and ua likes people 

with similar attractiveness to ur, or equivalently, when people 

with similar taste to ur like ua and people with similar taste to 

ua like ur. 

 

More formally, for a predicted successful interaction between 

ua and ur: denoted ua _! ur, there are two conditions to be 

fulfilled: 5. The attractiveness of the recommended user 

should match the taste of the active user, which will facilitate 

initiation of the interaction from the active user to the 

recommended user 

 

The paper [2] proposes an algorithm based on three phases: 

 

1) Data Partitioning Phase 

2) Map Phase 

3) Reduce Phase 

 

1. Data Partitioning Phase: Here, it separates the UserID 

into different files, in these files each row stores a UserID. 

These files are as the I/P to the map phase.  

 

2. Map Phase: The Hadoop platform, initialize a new 

mapper if the Datanode has enough response to initialize a 

mapper. The mapper’s setup builds the rating matrix between 

user and item which are already filtered by local filter. The 

mapper reads the UserID file by line no. Take the line no. as 

the i/p key and contents of the line as the values. The local 

filter of Bloom filter randomly selects 50% users by the 

random function. In the next step, it computes the similarity 

between this user and other users. Finally, it identifies the 

user’s nearest neighbor (by similarity values) and accordingly 

with equation 2 to calculate his predict rating on items. The 

Global filter of the Bloom filter works for the accuracy. It 

compares the two rating matrices and use e.g. threshold value 

to select the users from them. The algorithm sort the predict 

rating and store them in recommendation list. The UserID and 

its corresponding recommendation list as the intermediate 

key/value, output them to the reduce phase. 

 

 

3. Reduce Phase: The Hadoop platform would generate 

some reducers implicitly. The reducers collect the UserID and 

its corresponding recommendation list, sort them to UserID 

and then o/p them to the HDFS. 

 

III. PROPOSED SYSTEM 

Following figure clearly shows how the system is being 

accessed. First user creates an account in the website and 

browses some products and purchase as per his/her needs. 

Similarly more than one users browses the products and its 

actions are stored in the database. Now, the database records 

are converted into required csv/txt format and transferred to 

the Hadoop framework. 

 

Fig.1 System Architecture 

Hadoop framework applies collaborative filtering algorithm to 

the datasets and send the result back to the website database 

after pre-processing. Now from the updated database, 

recommended products for each product is shown on the 

website. 

IV. SIMILARITY CALCULATION 

First the datasets from website is preprocessed and converted 

into required csv/txt format for calculation. Each browsing 

action of user is converted in the form of “userid, productid, 

1/0” where, rating 1 represents user have browsed and 

purchased the product and rating 0 represents user have only 

browsed the product and have now purchased it. Now, these 

data is given to Hadoop framework which performs several 

map reduce jobs and generates similarity. 

 

Following figure represents how hadoop framework is used 

for computing similarity among itesms: 



International Journal on Future Revolution in Computer Science & Communication Engineering                                       ISSN: 2454-4248 
Volume: 4 Issue: 4                                                                                                                                                                            260 – 263 

_______________________________________________________________________________________________ 

262 

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org                                                                 

_______________________________________________________________________________________ 

 
Fig.2 Hadoop map reduce job workflow 

 

 

Job1: This job divides ratings from input file according to 

each user. 

- Mapper: read raw input information 

        - input: userID, productID, rating 

        - output: < key=userID, value=productID: rating > 

- Reducer: merge the output from Mapper according to unique 

userID 

        - input: < key=userID, value=< product1: rating1, 

product2: rating2, ... > > 

        - output: < key=userID, value="product1: rating1, 

product2: rating2, ..." > 

 

Job2: This job is used to Build the original co-occurrence 

matrix. 

- Mapper: read output from MapReduce job 1 

        - input: userID \t "product1: rating1, product2: rating2, 

..." 

        - output: < key="product_A: product_B", value=1 > 

- Reducer: merge the output from Mapper according unique    

productA: productB 

        - input: < key="product_A: product_B", value=1, 1, 1,...> 

        - output: < key="product_A: product_B", value=count > 

 

Job3: This job is used to normalize the co-occurrence matrix. 

- Mapper: read output from MapReduce job 2 and split 

        - input: product_A: product_B \t count 

        - output: < key=product_A, value="product_B=count" > 

- Reducer: calculate the normalized co-occurrence matrix 

value 

        - input: < key=product_A, value=< product_B=count, 

product_C=count, ... > > 

        -output: < key=product_B, value="productA=count/total" 

> 

 

Job4: This job is used to calculate the average purchase made 

by each user. 

- Mapper: read the original user rating information 

        - input: userID, productID, rating 

        - output: < key=userID, value=rating > 

- Reducer: merge the output from Mapper according to unique 

userID 

        - input: < key=userID, value=< rating1, rating2, ... > > 

        - output: < key=userID, value=< average rating > > 

 

Job5: This job is used to replace the value of products which 

are not browsed by the user with the average purchase value. 

- Mapper 1: read co-occurrence matrix from MapReduce Job 3 

        - input: product_B \t product_A=ratio 

        - output: < key=product_B, value="product_A=ratio" > 

- Mapper 2: read the original user rating information to build 

the rating matrix 

        - input: userID, productID, rating 

        - output: < key=product_B, value="userID: rating" > 

- Reducer: 

        - input: < key=product_B, value="product_A=ratio1, 

product_C=ratio2, ..., user1: rating1, user2: rating2, ..." > 

       - output: < key="userID: productID", value=ratio* rating> 

       - setup: read the user average rating  

 

Job6: This job is used to multiply the co-occurrence matrix 

with the rating matrix to generate similarities. 

- Mapper: read the output from MapReduce Job 5 

        - input: userID: productID \t ratio * rating 

        - output: < key="userID: productID", value=ratio*rating> 

- Reducer: 

        - input: < key="userID: productID", value=< subrating1, 

subrating2, ... > > 

        - output:< key="userID: productID", value=rating 

prediction > 
 

V. EXAMPLE 

Say we have browsing history of 5 users and 7 items as 

follows: 
Item/User U1 U2 U3 U4 U5 

I1 1 1 0 1 1 

I2 1 1 - - 0 

I3 1 1 - 0 0 

I4 - 1 1 1 1 

I5 - - 0 - 0 

I6 - - - 1 1 

I7 - - 0 - - 

Fig.3 Sample Input 

In above table, rating 1 represents user has browsed and 

purchased that item and rating 0 represents user has only 

browsed that item. User id is from 1 to 5 and item id is from 

10001 to 10007. 

 

Now, after the map reduce job 1 calculation, we get the 

browsing as per each user i.e. from above input, we get 

1 10001:1,10002:1,10003:1 

2 10001:1,10002:1,10003:1,10004:1 

3 10007:0,10005:0,10004:1,10001:0 

4 10006:1,10003:0,10001:1,10004:1 

5 10004:1,10005:0,10006:1,10001:1,10002:0,10003:0 

 

Now, after the map reduce job 2 calculation, we get co-

occurrence matrix as follows: 
Item/Item I1 I2 I3 I4 I5 I6 I7 

I1 5 3 4 4 2 2 1 

I2 3 3 3 2 1 1 0 

I3 4 3 4 3 1 2 0 

I4 4 2 3 4 2 2 1 

I5 2 1 1 2 2 1 1 

I6 2 1 2 2 1 2 0 

I7 1 0 0 1 1 0 1 

Fig.4 Co-occurrence Matrix 

Above values represents the number of users that have 

browsed both the items. For example, I1 and I3 value is 4 
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which means there are 4 users (U1, U2, U4 and U5 from fig. 

3) which have browsed both I1 and I3. 

 

Now, after the map reduce job 3 calculation, we get 

normalized co-occurrence matrix as follows: 
Item/Item I1 I2 I3 I4 I5 I6 I7 

I1 0.23 0.14 0.19 0.19 0.095 0.095 0.047 

I2 0.23 0.23 0.23 0.15 0.077 0.077 0 

I3 0.23 0.18 0.23 0.18 0.059 0.12 0 

I4 0.22 0.11 0.17 0.22 0.11 0.11 0.055 

I5 0.20 0.10 0.10 0.20 0.20 0.10 0.10 

I6 0.20 0.10 0.20 0.20 0.10 0.20 0 

I7 0.25 0 0 0.25 0.25 0 0.25 

Fig. 5 Normalized Co-occurrence Matrix 

Matrix is normalized by dividing each element with the sum of 

values from that row. For Example, in fig. 5 I1 and I2 value is 

generated by dividing its value which is 3 (from fig. 4) with 

the sum of that row i.e. 21 (sum of 1st row in fig.4), so we get 

3/21 = 0.14 

 

Now, after the map reduce job 4 calculation, we get the 

average purchase of each user. In our case we get: 

1 1.0 

2 1.0 

3 0.25 

4 0.75 

5 0.5 

For Example, U5 has value 0.5 since he/she has browsed 6 

items out of which only 3 of them is purchased. Therefore, 

average purchase = 3/6 = 0.5 

 

Now, job 5 and 6 generates final similarities by multiplying 

the normalized co-occurrence (fig.5) matrix with input matrix 

(fig.3). Note that first the empty values in input matrix is 

replaced by corresponding user’s average purchase before 

multiplication is performed. We get final similarity matrix as 

follows: 
Item/User U1 U2 U3 U4 U5 

I1 1 1 0.297 0.738 0.547 

I2 1 1 0.288 0.692 0.461 

I3 1 1 0.308 0.705 0.529 

I4 1 1 0.319 0.763 0.583 

I5 1 1 0.275 0.800 0.555 

I6 1 1 0.325 0.750 0.601 

I7 1 1 0.250 0.875 0.625 

Fig. 6 Final User based similarity matrix 

 

Now, for providing recommended items for each user we refer 

to final similarity matrix and select the items with maximum 

values. For example, in our case the recommended items for 

user 4 will be 10007 and 10005 since these have larger 

similarity values i.e. 0.875 and 0.800 as compared to other 

items. 

 

We can also find set of items similar to a particular item from 

co-occurrence matrix (fig. 4). For Example, in our case to find 

items similar to I1, we check I1 column from co-occurrence 

matrix and find items with larger similarity value as compared 

to other items, which are I3 and 14 with similarity value = 4 

 

One drawback of using this approach is that the similarity 

values are not efficient if user have purchased all the browsed 

items. For Example in our case for U1 and U2, the similarity 

value for each item is 1 since the user have purchased all the 

browsed items and system cannot effectively decide which 

items to recommend. 

 

VI. CONCLUSION 

We discussed about recommendation system algorithms and 

map-reduce programming model by Hadoop. A parallel 

algorithm to compute item-based similarity using Hadoop 

map-reduce framework is explained. The reason behind 

parallelization of the computation is inspired by word count 

example using map-reduce. The computation is split into 

multiple small tasks and each of the small task is handled 

independently by a map-reduce job. 

We showed details of the approach including the inputs and 

outputs produced at each phase of execution. Different 

experiments are conducted to show the performance 

improvement by using a multi-node cluster. Test data for 

experiments is taken from movie-lens databases. The results 

show that the performance of the algorithm improves as the 

number of nodes within a cluster increases with constant 

dataset size. The Hadoop map-reduce approach saves a lot of 

resources in computing similarities and generates 

recommendations in short time. 
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