
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 260 – 263

260

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Product Recommendation using Hadoop

Prof. Deepali Patil

Department of Information Technology

Shree L. R. Tiwari College of Engineering

Mumbai, India

e-mail: deep.patil1987@gmail.com

Ujwal Ahir

Department of Information Technology

Shree L. R. Tiwari College of Engineering

Mumbai, India

e-mail: ujwal.ahir@gmail.com

Dhruv Bindoria
Department of Information Technology

Shree L. R. Tiwari College of

Engineering

Mumbai, India

e-mail: dhruv.bindoria@gmail.com

Shankarlal Bhati
Department of Information Technology

Shree L. R. Tiwari College of

Engineering

Mumbai, India

e-mail: bhatishankar96@gmail.com

Raj Mehta

Department of Information Technology

Shree L. R. Tiwari College of

Engineering

Mumbai, India

e-mail: rraajjmehta@gmail.com

Abstract— Recommendation systems are used widely to provide personalized recommendations to users. Such systems are used by e-commerce

and social networking websites to increase their business and user engagement. Day-to-day growth of customers and products pose a challenge

for generating high quality recommendations. Moreover, they are even needed to perform many recommendations per second, for millions of

customers and products. In such scenarios, implementing a recommendation algorithm sequentially has large performance issues. To address

such issues, we propose a parallel algorithm to generate recommendations by using Hadoop map-reduce framework. In this implementation, we

will focus on item-based collaborative filtering technique based on user's browsing history, which is a well-known technique to generate

recommendations.

Keywords- Hadoop, HDFS, Content based filtering, Collaborative filtering, Map-Reduce, E-commerce, Similarity Calculation.

__*****___

I. INTRODUCTION

A. Recommendation System :

Recommendation systems [3] are part of information filtering

system which aims at predicting the preference the user would

give to an item. Recommendation systems have changed the

way websites interact with their users. They eliminate the

static experience, in which users search for static information

for potentially buying products, by increasing interaction

among users to provide rich user experience dynamically.

Recommendation systems derive recommendations for each

individual user based on their past purchases, searches and on

other users' purchase and search behaviours. Recommendation

systems personalize the experience of each user by

randomizing content that is particularly relevant to their

experienced interests, instead of providing a static experience

to every user. Recommendation systems can be extremely

effective on large scale if they are implemented correctly.

Many of the world's top used websites, such as Facebook,

Twitter, LinkedIn, Amazon etc. use recommendation systems

to engage their users with relevant content.

B. Collaborative Filtering:

Collaborative filtering is the most successful recommendation

system technique till date. It is used in many of the most

successful recommendation systems on the web. Collaborative

Filtering systems recommend products to a target user based

on the behaviours of other users. Collaborative filtering

systems uses statistical techniques to and a set of users known

as

Neighbours, that have a similar experiences as that of the

target user i.e. either they have rated different products

similarly or they tend to buy similar set of products or either

they have watch same set of movies or listened to similar kind

of music. Once a neighbourhood of users is formed, the

system uses several algorithms to derive recommendations. In

order to understand the algorithm and the recommendation

process, its good to introduce basic terms and then get familiar

with approaches, methods, tasks, challenges and evaluation of

recommendation systems. Items and users are the two

important entities engaged in every recommendation system.

An item refers to any product such as a music song, a movie, a

product, an article that recommendation system is to

recommend. User is a person ready to accept

recommendations when providing opinions about various

items. The goal of collaborative filtering algorithms is to either

make suggestions about new items or to make prediction about

the acceptance of a certain item for recommendations when

providing opinions about various items. In addition, it even

aims to either make suggestions of new items or to make

prediction about the acceptance of a certain item for a

particular user based on users past experiences and similarity

with others users. Prediction is a numeric value expressing the

affinity of an item for the active user. Recommendation is a

list of items that the active user will like the most. This is also

known as top N recommendations where the list contains top

N liked items [3].

C. Hadoop Map-Reduce Framework:

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 260 – 263

261

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Map-Reduce [3] is a programming framework designed for

processing large amounts of data, in parallel, by dividing a

complete task into a set of independent tasks where each

independent task performs the similar computation. The data

in the map-reduce framework is not shared across the nodes.

Instead, the data elements in the map-reduce are immutable

i.e. the data once written cannot be written twice and it can

only be read many times. All the data used as an input and the

resultant data post processing is stored in HDFS (Hadoop

Distributed File System). The data read from the input les,

stored in HDFS are processed and converted into intermediate

results and are further processed to generate final results.

II. LITERATURE SURVEY

The paper [1] proposes an algorithm for generating

recommendations based on typicality.

To model this behavior, following traditional collaborative

filtering assumptions, we define the following two

assumptions based on user taste:

1. If people with similar taste to ua like ur, ua will like ur;

2. If people with similar taste to ur like ua, ur will like ua

Since both assumptions lead to the same predicted selections,

therefore, ur should be recommended to ua when ur likes

people with similar attractiveness to ua and ua likes people

with similar attractiveness to ur, or equivalently, when people

with similar taste to ur like ua and people with similar taste to

ua like ur.

More formally, for a predicted successful interaction between

ua and ur: denoted ua _! ur, there are two conditions to be

fulfilled: 5. The attractiveness of the recommended user

should match the taste of the active user, which will facilitate

initiation of the interaction from the active user to the

recommended user

The paper [2] proposes an algorithm based on three phases:

1) Data Partitioning Phase

2) Map Phase

3) Reduce Phase

1. Data Partitioning Phase: Here, it separates the UserID

into different files, in these files each row stores a UserID.

These files are as the I/P to the map phase.

2. Map Phase: The Hadoop platform, initialize a new

mapper if the Datanode has enough response to initialize a

mapper. The mapper’s setup builds the rating matrix between

user and item which are already filtered by local filter. The

mapper reads the UserID file by line no. Take the line no. as

the i/p key and contents of the line as the values. The local

filter of Bloom filter randomly selects 50% users by the

random function. In the next step, it computes the similarity

between this user and other users. Finally, it identifies the

user’s nearest neighbor (by similarity values) and accordingly

with equation 2 to calculate his predict rating on items. The

Global filter of the Bloom filter works for the accuracy. It

compares the two rating matrices and use e.g. threshold value

to select the users from them. The algorithm sort the predict

rating and store them in recommendation list. The UserID and

its corresponding recommendation list as the intermediate

key/value, output them to the reduce phase.

3. Reduce Phase: The Hadoop platform would generate

some reducers implicitly. The reducers collect the UserID and

its corresponding recommendation list, sort them to UserID

and then o/p them to the HDFS.

III. PROPOSED SYSTEM

Following figure clearly shows how the system is being

accessed. First user creates an account in the website and

browses some products and purchase as per his/her needs.

Similarly more than one users browses the products and its

actions are stored in the database. Now, the database records

are converted into required csv/txt format and transferred to

the Hadoop framework.

Fig.1 System Architecture

Hadoop framework applies collaborative filtering algorithm to

the datasets and send the result back to the website database

after pre-processing. Now from the updated database,

recommended products for each product is shown on the

website.

IV. SIMILARITY CALCULATION

First the datasets from website is preprocessed and converted

into required csv/txt format for calculation. Each browsing

action of user is converted in the form of “userid, productid,

1/0” where, rating 1 represents user have browsed and

purchased the product and rating 0 represents user have only

browsed the product and have now purchased it. Now, these

data is given to Hadoop framework which performs several

map reduce jobs and generates similarity.

Following figure represents how hadoop framework is used

for computing similarity among itesms:

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 260 – 263

262

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

Fig.2 Hadoop map reduce job workflow

Job1: This job divides ratings from input file according to

each user.

- Mapper: read raw input information

 - input: userID, productID, rating

 - output: < key=userID, value=productID: rating >

- Reducer: merge the output from Mapper according to unique

userID

 - input: < key=userID, value=< product1: rating1,

product2: rating2, ... > >

 - output: < key=userID, value="product1: rating1,

product2: rating2, ..." >

Job2: This job is used to Build the original co-occurrence

matrix.

- Mapper: read output from MapReduce job 1

 - input: userID \t "product1: rating1, product2: rating2,

..."

 - output: < key="product_A: product_B", value=1 >

- Reducer: merge the output from Mapper according unique

productA: productB

 - input: < key="product_A: product_B", value=1, 1, 1,...>

 - output: < key="product_A: product_B", value=count >

Job3: This job is used to normalize the co-occurrence matrix.

- Mapper: read output from MapReduce job 2 and split

 - input: product_A: product_B \t count

 - output: < key=product_A, value="product_B=count" >

- Reducer: calculate the normalized co-occurrence matrix

value

 - input: < key=product_A, value=< product_B=count,

product_C=count, ... > >

 -output: < key=product_B, value="productA=count/total"

>

Job4: This job is used to calculate the average purchase made

by each user.

- Mapper: read the original user rating information

 - input: userID, productID, rating

 - output: < key=userID, value=rating >

- Reducer: merge the output from Mapper according to unique

userID

 - input: < key=userID, value=< rating1, rating2, ... > >

 - output: < key=userID, value=< average rating > >

Job5: This job is used to replace the value of products which

are not browsed by the user with the average purchase value.

- Mapper 1: read co-occurrence matrix from MapReduce Job 3

 - input: product_B \t product_A=ratio

 - output: < key=product_B, value="product_A=ratio" >

- Mapper 2: read the original user rating information to build

the rating matrix

 - input: userID, productID, rating

 - output: < key=product_B, value="userID: rating" >

- Reducer:

 - input: < key=product_B, value="product_A=ratio1,

product_C=ratio2, ..., user1: rating1, user2: rating2, ..." >

 - output: < key="userID: productID", value=ratio* rating>

 - setup: read the user average rating

Job6: This job is used to multiply the co-occurrence matrix

with the rating matrix to generate similarities.

- Mapper: read the output from MapReduce Job 5

 - input: userID: productID \t ratio * rating

 - output: < key="userID: productID", value=ratio*rating>

- Reducer:

 - input: < key="userID: productID", value=< subrating1,

subrating2, ... > >

 - output:< key="userID: productID", value=rating

prediction >

V. EXAMPLE

Say we have browsing history of 5 users and 7 items as

follows:
Item/User U1 U2 U3 U4 U5

I1 1 1 0 1 1

I2 1 1 - - 0

I3 1 1 - 0 0

I4 - 1 1 1 1

I5 - - 0 - 0

I6 - - - 1 1

I7 - - 0 - -

Fig.3 Sample Input

In above table, rating 1 represents user has browsed and

purchased that item and rating 0 represents user has only

browsed that item. User id is from 1 to 5 and item id is from

10001 to 10007.

Now, after the map reduce job 1 calculation, we get the

browsing as per each user i.e. from above input, we get

1 10001:1,10002:1,10003:1

2 10001:1,10002:1,10003:1,10004:1

3 10007:0,10005:0,10004:1,10001:0

4 10006:1,10003:0,10001:1,10004:1

5 10004:1,10005:0,10006:1,10001:1,10002:0,10003:0

Now, after the map reduce job 2 calculation, we get co-

occurrence matrix as follows:
Item/Item I1 I2 I3 I4 I5 I6 I7

I1 5 3 4 4 2 2 1

I2 3 3 3 2 1 1 0

I3 4 3 4 3 1 2 0

I4 4 2 3 4 2 2 1

I5 2 1 1 2 2 1 1

I6 2 1 2 2 1 2 0

I7 1 0 0 1 1 0 1

Fig.4 Co-occurrence Matrix

Above values represents the number of users that have

browsed both the items. For example, I1 and I3 value is 4

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 4 260 – 263

263

IJFRCSCE | April 2018, Available @ http://www.ijfrcsce.org

which means there are 4 users (U1, U2, U4 and U5 from fig.

3) which have browsed both I1 and I3.

Now, after the map reduce job 3 calculation, we get

normalized co-occurrence matrix as follows:
Item/Item I1 I2 I3 I4 I5 I6 I7

I1 0.23 0.14 0.19 0.19 0.095 0.095 0.047

I2 0.23 0.23 0.23 0.15 0.077 0.077 0

I3 0.23 0.18 0.23 0.18 0.059 0.12 0

I4 0.22 0.11 0.17 0.22 0.11 0.11 0.055

I5 0.20 0.10 0.10 0.20 0.20 0.10 0.10

I6 0.20 0.10 0.20 0.20 0.10 0.20 0

I7 0.25 0 0 0.25 0.25 0 0.25

Fig. 5 Normalized Co-occurrence Matrix

Matrix is normalized by dividing each element with the sum of

values from that row. For Example, in fig. 5 I1 and I2 value is

generated by dividing its value which is 3 (from fig. 4) with

the sum of that row i.e. 21 (sum of 1st row in fig.4), so we get

3/21 = 0.14

Now, after the map reduce job 4 calculation, we get the

average purchase of each user. In our case we get:

1 1.0

2 1.0

3 0.25

4 0.75

5 0.5

For Example, U5 has value 0.5 since he/she has browsed 6

items out of which only 3 of them is purchased. Therefore,

average purchase = 3/6 = 0.5

Now, job 5 and 6 generates final similarities by multiplying

the normalized co-occurrence (fig.5) matrix with input matrix

(fig.3). Note that first the empty values in input matrix is

replaced by corresponding user’s average purchase before

multiplication is performed. We get final similarity matrix as

follows:
Item/User U1 U2 U3 U4 U5

I1 1 1 0.297 0.738 0.547

I2 1 1 0.288 0.692 0.461

I3 1 1 0.308 0.705 0.529

I4 1 1 0.319 0.763 0.583

I5 1 1 0.275 0.800 0.555

I6 1 1 0.325 0.750 0.601

I7 1 1 0.250 0.875 0.625

Fig. 6 Final User based similarity matrix

Now, for providing recommended items for each user we refer

to final similarity matrix and select the items with maximum

values. For example, in our case the recommended items for

user 4 will be 10007 and 10005 since these have larger

similarity values i.e. 0.875 and 0.800 as compared to other

items.

We can also find set of items similar to a particular item from

co-occurrence matrix (fig. 4). For Example, in our case to find

items similar to I1, we check I1 column from co-occurrence

matrix and find items with larger similarity value as compared

to other items, which are I3 and 14 with similarity value = 4

One drawback of using this approach is that the similarity

values are not efficient if user have purchased all the browsed

items. For Example in our case for U1 and U2, the similarity

value for each item is 1 since the user have purchased all the

browsed items and system cannot effectively decide which

items to recommend.

VI. CONCLUSION

We discussed about recommendation system algorithms and

map-reduce programming model by Hadoop. A parallel

algorithm to compute item-based similarity using Hadoop

map-reduce framework is explained. The reason behind

parallelization of the computation is inspired by word count

example using map-reduce. The computation is split into

multiple small tasks and each of the small task is handled

independently by a map-reduce job.

We showed details of the approach including the inputs and

outputs produced at each phase of execution. Different

experiments are conducted to show the performance

improvement by using a multi-node cluster. Test data for

experiments is taken from movie-lens databases. The results

show that the performance of the algorithm improves as the

number of nodes within a cluster increases with constant

dataset size. The Hadoop map-reduce approach saves a lot of

resources in computing similarities and generates

recommendations in short time.

ACKNOWLEDGMENT

Authors would like to thanks to her guide Prof. Deepali Patil,

Head of I.T department, SLRTCE, Thane for their valuable

support and help.

REFERENCES

[1] Reshma U. Shinde “Typicality-Based Collaborative Filtering
Recommendation System”, IJIRCCE, 2016

[2] Nilay Narlawar “A speedy approach: User-based Collaborative
Filtering with Mapreduce”, IJIRCCE, 2014

[3] Chetan Prakash Somani “Item-Based Recommendation
Algorithm Using Hadoop”, Auburn University, 2015

[4] Jing Jiang, Jie Lu, Guangquan Zhang, Guodong Long, “Scaling-
up Item-based Collaborative Filtering Recommendation
Algorithm based on Hadoop”, 2011 IEEE World Congress on
Services

[5] Jai Prakash Verma, Bankim Patel, Atul Patel, “Big Data
Analysis: Recommendation System with Hadoop Framework”,
2015 IEEE International Conference on Computational
Intelligence & Communication Technology

[6] Sebastian Schelter, Christoph Boden, Volker Markl, “Scalable
Similarity-Based Neighborhood Methods with MapReduce”,
Technische Universität Berlin, Germany

[7] https://grouplens.org/datasets/movielens/

[8] https://hadoop.apache.org/

