# Application of DTM Method for Solving Electrical Engineering Problems of Simple Electric Circuits

Prof. Narhari Onkar Warade Research Scholar Dept. of Mathematics, J.J.T. University Churu, Rajasthan, India *e-mail: narhariwarade@gmail.com*  Dr. Prabha Rastogi Departmetn of Mathematic J.J.T. University Churu, Rajasthan, India *e-mail: prabha.rastogi54@yahoo.com* 

*Abstract* - In this paper Chou's Method (DTM) for solving initial valve problems involving first order ordinary differential quotations we introduce the concept of DTM & applied it to obtain solution of three examples for demonstration. The results are compare with exact solution & DTM solutions.

\*\*\*\*

Keywords - Ordinary differential quotations chou's method, Initial valve problems LR-Circuits, RC- Circuit.

### I. INTRODUCTION

The purpose of this paper is to employ the DTM method on example of LR- Circuits, RC- Cirenits, Which are very simple.

The purpose of this paper is to employ the DTM method on examples of ordinary differential equation of first order and compared with result obtain by exact solution by using complimentary function & particular integral. In recent years,

Bizar J. used for Riccati differential equation(1), Opanuga On numerical solution of systems of ordinary differential equitations by numeriacla analytical method (2), Chen used DTM to obtain the solutions of nonlinear system of differential quotations (3), DTM was first proposed by Zhou & Proved that DTM is an iterative procedure for obtaining analytic Taylor's series solution of differential equations DTM is useful to solve ordinary diff equations. & boundary value problems (4), Ayaz F has used DTM to find the series solution of system of differential equitation(5), Duen Y use DTM for Burger's equation to obtain the series solution(6), Bert W. has applied DTM on system of linear equation and analysis of its solutions(7), Chen C.L. has applied DTM technique for steady nonlinear beat conduction problems(8), Using DTM Hassan have find out series solution and that solution compared with DTM method for linear & non linear initial value problems & proved that DTM is reliable tool to find numerical solution(9), Khaled Batiha has been used DTM to obtain the Taylor's series as solution of linear, nonlinear system of ordinary differential equations(10), Montri Thangmoon has been used to find numerical solution of ordinary differential equations(11), Edeki, A semi method for solutions of a certain class of first order ordinary differential equations

### **II. BASIC DEFINITIONS & PROPERTIES OF DTM**

# METHOD

v(t) can be expressed by Taylor's series, then v(t) can be

represented as

 $\mathbf{v}(t) = \sum_{k=0}^{\infty} \frac{(t-ti)^{k}}{k!} \mathbf{V}(k)$ 

v(t) is called inverse of V(k)

$$\therefore \mathbf{v}(t) = \sum_{k=0}^{\infty} \left[ \frac{(t-ti)^{k}}{k!} \right] \mathbf{V}(k) = \mathbf{D}^{-1} \mathbf{V}(k)$$
$$\mathbf{v}(t) = \sum_{k=0}^{\infty} \left[ \frac{(t-ti)^{k}}{k!} \right] \mathbf{V}(k) + \mathbf{R}_{n+1}(t)$$

by Taylor's Series

V (k) = 
$$\frac{1}{k!} \left[ \frac{d^k v(t)}{dt^k} \right]$$
 at  $t = t_0$ 

#### III. FUNDAMENTAL THEOREMS ON DTM

| Theorem 1 :- | If              | $p(t) = n(t) \pm s(t) \text{ then}$ $P(k) = N(k) \pm S(k)$                           |
|--------------|-----------------|--------------------------------------------------------------------------------------|
| Theorem 2 :- | If              | $p(t) = \propto (t) \text{ then } \propto n (t) \text{ then}$ $P (k) = \propto N(k)$ |
| Theorem 3 :- | If              | $p(t) = \frac{dn(t)}{dt}$ then                                                       |
|              |                 | P(k) = (k+1) N(k+1)                                                                  |
| Theorem 4 :- | If              | p (t) = $\frac{d^2 n(t)}{dt^2}$ then                                                 |
|              | P (k) =         | (k+1) (k+2) (k+2) N (k+2)                                                            |
| Theorem 5 :- | If              | p (t) = $\frac{d^s n(t)}{dt^s}$ then                                                 |
| P (k):       | = (k+1) (l      | k+2) (k+3) (k+s) N (K+s)                                                             |
| Theorem 6 :- | If              | $p(t) = t^{s}$ them $k$                                                              |
|              |                 | $P(K) = \sum_{l=0}^{\infty} S(l) P(k-l)$                                             |
| Theorem 7 :- | If              | $p(t) = t^{s}$ them                                                                  |
|              | $P(k) = \delta$ | δ (k-s)                                                                              |
|              |                 | $\delta (k-s) = \begin{cases} 1 \ if \ k = s \\ 0 \ if \ k \neq s \end{cases}$       |
| Theorem 8:-  | If              | $p(t) = e^{\lambda t}$ then                                                          |

IJFRCSCE |APRIL 2018, Available @ http://www.ijfrcsce.org

| Theorem 9:-  | If | P (k) = $\frac{\lambda^k}{k!}$<br>p(t) = (1+t) <sup>s</sup> then                                |
|--------------|----|-------------------------------------------------------------------------------------------------|
|              |    | $P(k) = \frac{S(s-1).(s-k+1)}{k!}$                                                              |
| Theorem 10:- | if | P(t) = sin(wt + $\infty$ ) then<br>P(k) = $\frac{w^k}{ki}$ sin ( $\frac{\pi k}{2}$ + $\infty$ ) |
| Theorem 11:- | if | p(t) = cos (wt + $\infty$ ) then<br>P(k)= $\frac{w^k}{ki} \cos(\frac{\pi k}{2} + \infty)$       |
|              |    |                                                                                                 |

# IV. EXPERIMENTATION AND VALIDATION OF RESULTS

#### Example:1

#### LR- Circuit

Find the current at any time t70 in a circuit having in series a constant electromotive force 80v, a resistar 20 and and induction 0.4 H given that initial current is zero find current in circuits.

 $\rightarrow$  Equation of LR – Circuit is

$$L \frac{di}{dt} + RI = E(t)$$
**20**Ω
**80**V
**0.0 0.4**

L = 0.4, R = 20, E- 80 0.4  $\frac{dI}{dt}$  + 20I = 80 4  $\frac{dI}{dt}$  + 200I = 800  $\frac{dI}{dt}$  + 50I = 200

General solution is given by I etc.  $e^{5xt} = 200$ .  $e^{5xt} dt + C = 200$ .  $\frac{e^{50t}}{50} + C$ 

I (+) =  $e^{-50t} [4e^{50t}+c]$ Given I (0) = 0 = 0 = 4 + C = C = -4 ∴ I (t) = 4 (1 -  $e^{50t}$ ) = 4 - 4 (1 - 50t +  $\frac{(50t)^2}{2!} - \frac{(50t)^3}{3!} + \frac{(50t)^4}{4!}$ ) = 4 - [4 - 200t + 5000t<sup>2</sup> -  $\frac{2}{3}(50t)^3 + \frac{50t^4}{6}$ R (t) = 200t - 5000t2 +  $\frac{2}{3}(50t)^3 - \frac{(50t)^4}{6} + \dots$ 

Zhon's Method  
I' (t) + 50 I (t) = 200  
(K+1) I (K+1) + 50 I(k) = 200  
Put K = 0, 1, 2, 3....  
I (1) = 200  
2 I (2) + 50 I (1) =  
2I (2) + 10,000 =  
2I (1) + 5000 =  
I (2) = -5000  
3I (3) + 50 I (2) =0  
3I (3) + 50 x (-5000) =0  
I(3) = 
$$\frac{250000}{3}$$
  
4I (4) + 50 I (3) = 0  
4I (4) =  $\frac{-250000 \times 25}{3 \times 2}$   
 $= \frac{6250000}{6}$   
I(5) =  
I (6) =  
I (t) = I (0) + tI (1) +  $\frac{t^2}{2!}$  +  $t^3$  I (3) +  $t^4$  I (4) +  
I (t) = 200t - 5000t<sup>2</sup> + 43 (50t)3 -  $\frac{-(50t)^5}{6}$  +  $\frac{(50t)^5}{30}$   
 $= 4 [1 - e^{-50t}]$ 

Table-1

By

| t       | Exact        | DTM          | Error    |
|---------|--------------|--------------|----------|
|         | Solution     | Solution     |          |
| 0.00000 | 0.000000     | 0.000000     | 0.000000 |
| 0.1     | 3.97304842   | 3.97304842   | 0.000000 |
| 0.2     | 3.9998184    | 3.9998184    | 0.000000 |
| 0.3     | 3.999998776  | 3.999998776  | 0.000000 |
| 0.4     | 3.9999999992 | 3.9999999992 | 0.000000 |
| 0.5     | 4.00000      | 4.00000      | 0.000000 |
| 0.6     | 4.00000      | 4.00000      | 0.000000 |
| 0.7     | 4.00000      | 4.00000      | 0.000000 |
| 0.8     | 4.00000      | 4.00000      | 0.000000 |
| 0.9     | 4.00000      | 4.00000      | 0.000000 |
| 1.0     | 4.00000      | 4.00000      | 0.000000 |

Ex. 2A generator having emt 20 cosst volts is connectedin series with 10 ohms resistor and inductor of2henries. Rt the switch is closed at a time t=0 determine thecurrent at time t>0

$$L \frac{dI}{dt} + RI = E$$

$$2 \frac{dI}{dt} + 10I = 20 \cos 5t$$

$$\frac{dI}{dt} + 5I = 10 \cos 5t$$

$$I \cdot e^{st} = \int e^{5t} 10 \cos t dt + c$$

$$I \cdot e^{st} = 10 \left[ \frac{e^{5t}}{(5^2 + 5^2)} \right] (5 \cos t + t)$$

 $5\sin 5t ) + C$ 

$$= 10 \left[ \frac{e^{5t}}{(50)} (5cost + 5 \sin 5t) \right] +$$

C I (t) =  $co5t + sin5t + ce^{-st}$  = I(0) = 0

1

$$= \cos 5t + \sin 5t - e^{-5t}$$
$$= \left[1 - \frac{(5t)^2}{2!} + \frac{(5t)^4}{4!} - \frac{(5t)^6}{6!} + \right]$$

••••

+ 
$$\left[ (5t) - \frac{(5t)^3}{3!} + \frac{(5t)^5}{5!} - \frac{(7t)^7}{7!} + \right]$$

= c = -

••••

$$- \left[1 - \frac{(5t)}{1!} + \frac{(5t)^2}{2!} - \frac{(5t)^3}{3!} + \frac{(5t)^4}{4!}\right]$$
$$= 10t - (5t)^2 + 2\frac{(5t)^5}{5!} + \dots$$

# DTM

$$(K+1) I (K+1) + 5 I (K) = 10$$

$$\left[ \frac{s^{k}}{sk!} Cos (\pi/2 k) \right]$$

$$k = 0,1,2,3$$

$$I (1) + 5 (0) = 10$$

$$I (1) = 10$$

$$2I (2) + 5 (1) = 10 \left[ \frac{s^{1}}{!!} \frac{cost}{2} \right]$$

$$I (2) = \frac{-5}{2} x 10 = \frac{-50}{2} = -25$$

$$3I (3) + 5 I (2) = 10 \left[ \frac{5^{2}}{2!} (-1) \right]$$

$$3I (3) - 125 = \frac{5 x 25}{1}$$

| 3I (3) = -                                                                | 125 + 125 = 0                                   |
|---------------------------------------------------------------------------|-------------------------------------------------|
| 4I(4) + 5I(3) = 0                                                         | )                                               |
| 4I(4) = -5I(3) = 0                                                        | )                                               |
| I(4) = 0                                                                  |                                                 |
| $5\mathrm{I}(5) + \frac{5\mathrm{I}(4)}{0} = 10 \left[\frac{5}{4}\right]$ | <sup>4</sup> / <sub>1!</sub> . 1]               |
|                                                                           |                                                 |
|                                                                           |                                                 |
| I (0) + tI (1) + $\frac{t^2}{2!}$ + $t^3$                                 | $I(3) + t^4 I(4) + .$                           |
| $0 + 10 t - 25t^2 + \frac{(25)^2}{12}$                                    | $\frac{2}{5} t^5 - \frac{3125}{72} t^6 + \dots$ |
|                                                                           |                                                 |

<u> Table – 2</u>

| t       | Exact       | DTM         | Error    |
|---------|-------------|-------------|----------|
|         | Solution    | Solution    |          |
| 0.00000 | 0.000000    | 0.000000    | 0.000000 |
| 0.1     | 0.75047744  | 0.75047744  | 0.000000 |
| 0.2     | 1.01389385  | 1.01389385  | 0.000000 |
| 0.314   | 0.7927508   | 0.7927508   | 0.000000 |
| 0.4     | 0.3578153   | 0.3578153   | 0.000000 |
| 0.5     | -0.2847564  | -0.2847564  | 0.000000 |
| 0.6     | -0.898659   | -0.898659   | 0.000000 |
| 0.7     | -1.3174372  | -1.3174372  | 0.000000 |
| 0.8     | -1.42876175 | -1.42876175 | 0.000000 |
| 0.9     | -1.1994349  | -1.1994349  | 0.000000 |
| 1.0     | -0.68200    | -0.68200    | 0.000000 |

. . . .

# <u>EX 3</u>

RC-Circuit

A- Capacitor C = (.005) F in series with a resistor R = 40 ohms is changed from a battery E0=20 V assumes that initially the capacitor is completely uncharged, determine the change Q(t) voltage V(t) on the capacity and the current I(t) in the circuit.



744

International Journal on Future Revolution in Computer Science & Communication Engineering Volume: 4 Issue: 4

| $40 \text{ I} + \frac{\text{Q}}{(0.005)} = 20$                                                                                                     | $=\frac{-5}{6}\left[\frac{125}{48}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I + 5Q = 0.5                                                                                                                                       | = 7 x (t) + 5 Q (6) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\frac{\mathrm{d}Q}{\mathrm{d}t} + 5Q = 0.5$                                                                                                       | Q (7) $=\frac{-5}{6}$ [Q(6)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| General Solution is                                                                                                                                | $=\frac{5}{5}\left[\frac{5}{5} \times \frac{125}{5}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $Q = 0.1 + Ce^{-5t}$                                                                                                                               | 6 L6 48 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| at t = 0, Q=0, C=0.1                                                                                                                               | GS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $Q(+) = 0.1 - 0.1 e^{-5t}$                                                                                                                         | Q (t) = Q (0) + t Q(1) + t <sup>2</sup> Q(2) + t <sup>2</sup> Q(3) + t <sup>4</sup> Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $= (0.1) (1 - e^{-5t})$                                                                                                                            | $+ t^5 Q(5) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $v(+) = \frac{Q(+)}{c} = \frac{0.1(1 - e^{-5t})}{0.005} = \frac{\frac{1}{10}}{\frac{2}{1000}} (1 - e^{-5t})$ $= \frac{1000}{10 + 5} (1 - e^{-5t})$ | $= 0 + (0.5)t + \left(\frac{-25}{20}\right)t^2 + \left(\frac{25}{12}\right)t^3 + \left(\frac{-125}{48}\right)t^3 + \left(\frac{-125}{48}\right)t^3 + \left(\frac{-125}{48}\right)t^5 + \frac{125}{48}t^5 + \frac{125}{$ |
| $= 20 (1 - e^{-5t})$                                                                                                                               | Table – 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| I (t) $= \frac{dQ}{dt} = 0.5 e^{-5t}$                                                                                                              | t Exact DTM Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| By DTM                                                                                                                                             | 0 0.00000 0.00000 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (K+1) Q (K+1) + 5 Q(K) = 0.5                                                                                                                       | 01 0.0993262053 0.0993262053 0.0993262053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| When $K = 0, 1, 2, 3$                                                                                                                              | 02 0.09999546001 0.09999546001 0.09999546001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q(1) + 5 Q(0) = 0.5                                                                                                                                | 03 0.09999996941 0.09999996941 0.09999996941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q(1) = 0.5                                                                                                                                         | 04 0.09999999979 0.0999999979 0.09999999979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2Q(2) + 5Q(1) = 0                                                                                                                                  | 05 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $O(2) = \frac{-5 \times 0.5}{2} = \frac{\frac{25}{10}}{2}$                                                                                         | 06 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                    | 07 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $=-\frac{25}{20}=-1.25$                                                                                                                            | 08 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 30(3) + 50(2) = 0                                                                                                                                  | 09 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3Q(3) = -5Q(2)                                                                                                                                     | 10 0.1 0.1 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $= -5 \times (-\frac{25}{20})$                                                                                                                     | V. <u>CONCLUSION</u> : In this work we applied DTM for fir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

V. CONCLUSION : In this work we applied DTM for first order ordinary differential equation, it reduces the computational difficulties of other traditional methods (Laplace Transform).

DTM is best for solving initial value problems of first order on simple circuits electrical engineering problems

Fig. 1 (from table -1)



IJFRCSCE |APRIL 2018, Available @ http://www.ijfrcsce.org

 $=\frac{25}{4}$ 

4Q(4) + 5Q(3) = 04 Q (4) = -5 Q (3)

Q (4)  $=\frac{-5}{4}$  Q (3)

5Q(5) + 5Q(4) = 0

 $=\frac{125}{48}$ 

6Q(6) + 5Q(5) = 06Q(6) = -5Q(5)

Q(5) = -Q(4)

 $=\frac{-5}{4}x\frac{25}{12}=\frac{-125}{48}$ 

Q (3)  $=\frac{25}{12}$ 

## Fig. 2 (from table -2)







#### VI. REFERENCES :

- [1] Biazar, J., and Eslami, M., 2010, "Differential transform method for quadratic Riccati differential equations," International Journal of Nonlinear Science, 9(4),pp. 444-447.
- [2] Opanuga, A. A. Edeki, S.O., Okagbue, H. I. Akinloabi, G. O., Osheku, A. S. and Ajayi, B., 2014, "On numerical solutions of system of ordinary differential equations by numericalanalytical method," Applied Mathematical Sciences. 8, pp. 8199-8207. <u>doi.org/10-12988/ams.2014-410807.</u>
- [3] Chen C. K. and S.S. Chen, Application of the differential transform method to a non-linear conservative system, applied Mathematics and computation, 154, 431-441 (2004)
- [4] Zhou X., Differential Transformation and its Applications for Electrical Circuits, Huazhong University Press, Wuhan, China, 1986 (in Chinese)
- [5] Anyaz F., Solutions of the system of differential equations by differential transform method. Applied Mathematics and Computation, 147, 547-567 (2004).
- [6] Duan Y., R. Liu and Y. Jaing, Lattice Boltzmann model for the modified Burger's equation, Appl. Math. Computer, 202, 489-497 (2008)
- Bert. W. H. Zeng, Analysis of axial vibration of compound bars by differential transform method. Journal of Sound and Vibration, 275, 641-647 (2004)
- [8] Chen C.L. and Y.C. Liu. Differential transformation technique for steady nonlinear heat conduction problems, Appl. Math. Computer, 95, 155164 (1998)

- [9] Hassanl H. Abdel-Halim Comparison differential transformation technique with Admain decomposition method for linear and nonlinear initial value problems, Choas Solution Fractals, 36(I), 53-65 (2008)
- Khaled Batiha and Belal Batiha, A New Algorithm for Solving Lnear Ordinary Differential Equations, World Applied Sciences Journal, 15(12), 1774-1779, (2011), ISSN 1818-4952, IDOSI Publications.
- [11] Montri Thongmoon, Sasitorn Pusjuso The numerical solutions of differential transform method and the Laplace transforms method for a system of differential equations, Nonlinear Analysis: Hybrid System, 4 425-431 (2010)