
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 5 141– 144

141

IJFRCSCE | May 2018, Available @ http://www.ijfrcsce.org

Enhancing Precision in Cloud Computing: Implementation of a Novel Floating

point Format on FPGA

Pranali Kalamkar

PG Student, Dept. of Electronics and Telecommunication

BSIOTR, Wagholi,

Pune, India

pranaliranpise2015@gmail.com

Prof. D.S Bhosale

Professor, Dept. of Electronics and Telecommunication

BSIOTR, Wagholi,

Pune, India

bhosale.dilip@rediffmail.com

Abstract—— In this paper, we propose a Internet-based Cloud computing service that provides computing, storage and networking services to

multiple users. Computing capacity runs out quickly in cloud computing services with the increase in data size. To fill the shortage of

computation capacity, we propose to adopt variable precision by implementing unum (universal number). Unum is a number format different

from IEEE Standard for Floating-Point Arithmetic – IEEE 754 floats. Compared with IEEE 754 floats, the outstanding features of unum are

clearance of rounding errors, high information-per-bit and variable precision. As a candidate replacement of IEEE 754 floats, the application of

unum can improve the precision in computing. It decreases the bit width for high precision numbers. However, unum was only implemented in

software model before due to technical complexity, in order to validate the performance on chip, we implement this arithmetic on FPGA for the

very first time. We also implement an unum based 16-point FFT on FPGA. We validate the design and compare the bit width in computing with

IEEE 754 floats. The experimental results of comparison show that unum arithmetic can ensure correctness even in some extreme arithmetic

cases in which IEEE 754 floats cannot work properly, furthermore the bit width of unum is much less than IEEE 754 floats in the same

precision.

Keywords- FPGA, Cloud computing, MATLAB, Bandwidth, Floating Point Number

__*****___

I. INTRODUCTION

Cloud computing is a new paradigm to meet elastic

computing requirements of users by providing scalable

computing, storage and networking services. To meet the ever-

growing requirement of computation capacity along with the

increase in data volumes, intensive research has been carried

out to improve performance by optimizing resource utilization.

However, it was rarely reported in the literature to improve

cloud computing capacity by exploiting variable computation

accuracy since users are educated to use standard accuracy

only, such as IEEE 754 floats.

To enable variable precision computing, unum was first

introduced publicly by John L. Gustafson in 2013, the goal of

this number format is to overcome the weakness of existing

floats standard – IEEE 754 floats. With a book introduce unum

is published in 2015, the research group of Gustafson has done

some pioneer work as they found that the main weaknesses of

IEEE 754 floats are rounding errors and too large bit width in

computing.

Unum floats and IEEE 754 floats have different definition

of bit string. Bit string of IEEE 754 floats consists of 3 parts:

sign bit, exponent bits and fraction bits. For IEEE 754-style

floats if the bit width is constricted, it cannot represent an exact

number, then the actual value will be rounded to an

approximate value. As the computation process goes on, the

accumulation of rounding errors will become treacherous and

the result would deviate from exact value enormously,

especially in cloud computing with sensitive numeric analysis.

The rounding errors also effect the use of parallel methods.

Being different from IEEE 754 floats, bit string of unum

floats is comprised of 6 parts: sign bit, exponent bits, fraction

bits, ubit bit, exponent size bits and fraction size bits, exponent

size and fraction size bits can be 0. Unum was only

implemented in software model before due to technical

complexity, we would be the first team to implement this

arithmetic logic on FPGA to the best of our knowledge. The

main contributions of our work would be: (1) Unum basic

arithmetic addition, subtraction, multiplication and division

implementation on FPGA, with comparison of computing

results and power dissipation against IEEE 754 floats

arithmetic module. An application: unum arithmetic based 16-

point FFT implementation on FPGA and the comparison with

IEEE 754 floats based FFT module, which is a common

computation core in cloud computing.

II. LITERATURE SURVEY

[1], Junjie Hou, Yongxin Zhu, Yulan Shen, Mengjun Li,

Qian Wu and Han Wu

School of Microelectronics, Shanghai Jiao Tong University,

Shanghai, China 200240240 on ―Enhancing Precision and

Bandwidth in Cloud Computing: Implementation of a Novel

Floating-Point Format on FPGA‖

Cloud computing is a type of Internet-based service

computing that provides computing, storage and networking

services to multiple users. With the increase of data size,

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 5 141– 144

142

IJFRCSCE | May 2018, Available @ http://www.ijfrcsce.org

computing capacity runs out quickly in cloud computing

services. To fill the shortage of computation capacity, we

propose to adopt variable precision by implementing unum

(universal number), which is a number format different from

IEEE Standard for Floating-Point Arithmetic – IEEE 754

floats. Compared with IEEE 754 floats, the outstanding

features of unum are clearance of rounding errors, high

information-per-bit and variable precision. As a candidate

replacement of IEEE 754 floats, the application of unum can

improve the precision in computing, decrease the bit width for

high precision numbers.

However, unum was only implemented in software model

before due to technical complexity, in order to validate the

performance on chip, we implement this arithmetic on FPGA

for the first time. We also implement an unum based 16-point

FFT on FPGA. We validate the design and compare the bit

width in computing with IEEE 754 floats, evaluate the power

dissipation on FPGA. The experimental results of comparison

show that unum arithmetic can ensure correctness even in some

extreme arithmetic cases in which IEEE 754 floats cannot work

properly, furthermore the bit width of unum is much less than

IEEE 754 floats in the same precision.

III. PROPOSED SYSTEM

.

Figure 1. System Architecture

Figure 2. Block diagram of Image Processing

Our proposed system is as shown in above fig. Matlab is

responsible for creating the GUI and taking the input operands

from user.

After acquisition of operand, it is converted into IEEE 754

format. Block of 64 bits is then sent to FPGA for data

compression. Reconfigurable FPGA is performing the task of

arithmetic on received data

IEEE 754 Representation

In high precision numerical calculation, especially in scientific

calculation the precision of number format have a great

influence on the validity of computing results, the

accumulation of rounding errors may become hazardous than

we expected and cause many confusing paradoxes.

Figure 3. IEEE 754 Double Float

Design Flow

 This section examines the flow for design using FPGA.

This is the entire process for designing a device that guarantees

that we will not overlook any steps and that we will have the

best chance of getting back a working prototype of functions

correctly in our system. The design flow consists of the steps as

shown in the below flow diagram.

Fig. 4. Design Flow

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 5 141– 144

143

IJFRCSCE | May 2018, Available @ http://www.ijfrcsce.org

Computing Architecture of Float Multiplier

Computing Architecture of floats multiplier is depicted in

Fig.4, the procedures of floats multiplier require following

steps:

1. Determine the sign of result

2. Add two exponent parts

3. Integer multiplication of fraction parts

4. Normalize the results

For multiplier, sign of the result can be obtained directly with

sign of two operands by XOR. Then adding the exponents A −

exponent and B − exponent, if the added exponent is bigger or

smaller than the maximum or minimum exponent that can be

represented, overflow or underflow occur. Then Integer

multiplication of two fraction parts are performed, the amount

of multiplied fraction bits is the sum of significant bits of two

fraction parts, but only the higher bits are conserved because of

the constrain of bit width. Finally, transfer the result into

normalized format.

IV. HARDWARE AND SOFTWARE SPECIFICATION

A. Hardware Specification

1) Spartan 6 FPGA

• Flash memory: 16 Mb SPI flash memory (M25P16)

• USB 2.0 interface for On-board flash programming

• FPGA configuration via JTAG and USB

• 8 LEDs ,Six Push Buttons and 8 way DIP switch for user

defined purposes

• One VGA Connector

• One Stereo Jack

• One Micro SD Card Adapter

• Three Seven Segment Displays

• 39 IOs for user defined purposes

• On-board voltage regulators for single power rail operation

2) Software Specifications

The proposed system is implemented using C/C++

languages in MATLAB .

V. RESULTS

Results obtained from Matlab and Xilinx are as follows:

1. Conventional Method

2. IEEE 754 Method

VI. CONCLUSION

During the study and implementation of floating

point arithmetic and representation on FPGA, we found that

our proposed architecture is less time consuming and area

consuming. We are also able to enhance precision by our

proposed method.

The feature of clearance of rounding error makes it

more suitable for high precision computing, especially in

scientific computing as well as cloud computing where

sensitive numeric analytical computation is required.

Our application is expected to decrease the

computational capacity and memory bandwidth requirement

without losing accuracy in computing.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 5 141– 144

144

IJFRCSCE | May 2018, Available @ http://www.ijfrcsce.org

REFERENCES

[1] Chandrima Dadi, Ping Yi, Zongming Fei, and Hui Lu. A new

block-based data distribution mechanism in cloud computing. In

Cyber Security and Cloud Computing (CSCloud), 2016 IEEE

3rd International Conference on, pages 54–59. IEEE, 2016.

[2] Jiayin Li, Meikang Qiu, Zhong Ming, Gang Quan, Xiao Qin,

and Zonghua Gu. Online optimization for scheduling

preemptable tasks on iaas cloud systems. Journal of Parallel and

Distributed Computing, 72(5):666–677, 2012

[3] Meikang Qiu, Zhong Ming, Jiayin Li, Keke Gai, and Ziliang

Zong. Phase-change memory optimization for green cloud with

genetic algorithm. IEEE Transactions on Computers,

64(12):3528–3540, 2015.

[4] John L. Gustafson. The End of Error: Unum Computing, volume

24. CRC Press, 2015.

[5] John L Gustafson. A radical approach to computation with real

numbers. In Supercomputing Frontiers, 2016.

[6] William Edmund Milne. Numerical calculus. Princeton

University Press, 2015.

[7] J Brandts, M Kr´ızek, and Z Zhang. Paradoxes in numerical

calculations. Neural Network World, 26(3):317, 2016.

[8] John L. Gustafson. The end of numerical error. In 2015 IEEE

22nd Symposium on Computer Arithmetic, page 74, June 2015.

[9] Grace Nordin, Peter A Milder, James C Hoe, and Markus

P¨uschel. Automatic generation of customized discrete fourier

transform ips. In Proceedings of the 42nd annual Design

Automation Conference, pages 471–474. ACM, 2005.

[10] Gokhan Polat, Sitki Ozturk, and Mehmet Yakut. Design and

implementation of 256-point radix-4 100 gbit/s fft algorithm into

fpga for high-speed applications. ETRI Journal, 37(4):667–676,

2015.

