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Abstract:- A quasi- group is a group like structure(Q,*) which satisfies the latin square property, but neednot have an identity element, nor need 

it be associative. It coincides with the notion of a divisible magma. In this paper we make a study of quasi- groups which satisfy certain identities 

and Abelian Quasi- groups. 
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I. INTRODUCTION 

A theory of non- associative algebras have been developed 

without any assumption of a substitute for associative 

law,and the basic structure properties of such algebras have 

been shown to depend upon the possession of almost the 

same properties by related associative algebras. 

In this paper we derive certain structural properties 

of quasi-groups that are mentioned in B.A. Hausmann and 

O.Ore [6], D.C.Murdoch [7]. In the second section we make 

a study on quasi-groups which satisfy the law  

(ab) (cd) =(ac) (bd), known as Abelian Quasi-

group(Associative law III). 

This equation is also known as the functional 

equation of bisymmetry on a Quasi-group.  

II. PRELIMINARIES 

Definition 2.1. A quasi-group G is a set together with an 

operation of multiplication such that  

1) the set is closed under multiplication. 

2) The equations ax = b and ya = b have unique  

solutions for x and y ,where a and b are any two  (not 

necessarily distinct) elements of G 

Condition (2) is sometimes referred to as quotient axiom 

or latin square property. The quotient- axiom (2) implies 

both left and right cancellation laws .Since we are 

considering only finite quasi- groups, it is useful to note 

that every subset of G which isclosed under 

multiplication satisfies the quotient- axiom and is 

therefore a sub-quasi group of G. From the quotient- 

axiom (2) it follows that every element a in G has a right 

unit ea and a left unit ea′defined by 

aea =  ea'a = a 

Definition 2.2. If one of the minimal right unit sub-quasi 

group of a quasi-group G consists of a single element e, then 

e will become its own right (and left) unit. In this case e will 

be called the principal unit. 

Also the set H of all principal units of G forms a sub-quasi-

group of G. 

Definition 2.3. Let H be a sub-quasi-group of G, then if 

H fa (bH) = b fa (H), for all a, b ∈ H 

then H is called a left-normal-sub-quasi-group of G. 

The following are few examples of a quasi - group. 

1. The set of integers Z under the binary operation, 

subtraction (-) forms a quasi- group. 

2. The non- zero rational numbers (or non- zero real 

numbers) with division forms a quasi- group. 

III. QUASI – GROUPS SATISFYING CERTAIN 

IDENTITIES 

We denote by  the null sub-quasi-group 

containing no elements and contained in every sub-quasi-

group of G. Then the sub-quasi-groups of G will form a 

lattice. In this paper we investigate the condition under 

which the normal-sub-quasi-groups form a lattice. We also 

prove the Jordan-Holder theorem for quasi-groups.  
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Definition 3.1 :- 

Two sub-quasi-groups H and K of G are said to be 

permutable if for any two 

elements h and k, 

hk =  k
h

, wherek
∈ K and h∈ H. 

Theorem : 3.1 

Any two normal sub-quasi-groups H and K which 

have a non –void cross cut D are permutable.  

Proof :- 

 Let h, k be any two elements of H and K respectively 

and d be any fixed element of  D.Then 

hk = (dh
) (k


d) 

= d[h

fd (k


d)  (by normality of H and k) 

= d[k

 fd (h


)] 

= (dk

) h

 

= k

 h


 where k

∈ k & h
∈H 

Also   kh = (dk

) (h


d) 

= d[k

 fd (h


d) [by associative law I ] 

= d[h

 fd (k


)] 

= (dh

) k


 

 = h

 k


 

Thus hk = k

h

 and kh = h


 k


. 

∴H and K are permutable. 

Hence the theorem . 

Remark : - If the cross cut (H,K) is non –empty, and if H 

and K are normal, then the union [H,K] consists of all 

elements, and only those if the form hk. 

Theorem 3.2: 

The Jordan – HolderTheorem:- 

 The normal sub-quasi-groups of G which contain the 

right unit R form a Dedekind structure . 

Proof:- 

 Let H and K be two normal sub-quasi-groups of G. 

First we have to show that they form a structure. In order to 

show that they form a lattice it is sufficient to show that 

union [H,K] is normal. 

 Now for a sub-quasi-group H containing R the 

normality condition reduces to 

 

(1) H(bH) = f
-1

a (b)H ,For all elements a and b 

in G. 

From theorem3.1, it follows that  

  [H,K] = HK. 

Also from the normality of H and K and theorem 3.1 we 

have  

(HK) [b (Hk)] = (KH) [(bH)K] 

 = [(KH) (bH)] K 

 = [(Kb)H]K 

 = K[(bH)K] 

 = f
-1

a (bH) K 

 = f
-1

a (b) (HK)], 

 for all a and b in G. 

Hence [H,K] is normal, and the normal sub-quasi-group 

containing R from a lattice. 

 To show that it is a Dedekind structure, it is 

necessary to show that if M is any elements containing H, 

then 

 (M, [H, K]) = [H, (M,K) 

Now  

(2) [H, (M,K)] ⊆ (M, [H,K]) 

Since M ⊃ H and [H,K] = {hk/h  H, k  k}, it follows that 

(3)   (M, [H, K]) ⊆[H, (M,K)] 

 From (2) and (3) we get 

 (M, [H,K] = [H, (M,K). 

Hence the theorem. 

 The Dedekind structure will contain a unit element 𝑅  

and if R is normal, R =𝑅  . It is shown by Ore 6 that all 

principal chains of normal sub-quasi-groups between G and 

=𝑅 have the same length. Further, the quotient structures 

between successive terms in any one such principal chain 

are isomorphic in some order to those in any other. 
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Theorem 3.3:- 

 If H and K are any two permutable sub-quasi-groups 

of G which contain R, and if H is normal in the union [H,K], 

then the cross cut (H,K) is normal in K and 

 [H,K]/H K/ (H,K). 

Proof:- 

Given H is normal in [H,K] = HK. 

 ie, if hk, h

k

 HK then 

(4)  [(hk)H] [(h

 k


)H] = (hkh


 k


) H 

 Let k1, k2 K and put L=H K 

 Now (k1 l1) (k2 l2) (k1L) (k2L) 

 Where k1, k2K and l1, l2L = H K 

(5) (k1 l1) (k2 l2) = [(k1ek1) l1] [(k2 ek2) l2] 

 Also ek1, ek2R H by hypothesis. 

[(k1ek1)l1] [(k2 ek2)l2] [(k1 ek1)H] [(k2ek2)H] 

[l1,l2H K H] 

ie, [k1ek1)l1] [(k2 ek2)l2] (k1 H) (k2 H) = (k1 k2) H by (4). 

L.H.S. of (5) is an element of K, since k1, k2K and. 

 l1, l2,LK. 

 ∴(5) can be written as k3 = k1, k2 h. 

 ⇒h K, h H, h H K = L. 

(6)  ∴ (k1 L) (k2L)  (k1 k2) L 

 If (k1 k2) l (k1 k2)L 

Then (k1 k2) l= (k1 ek1) (k2 l)  (k1 L) (k2 L) 

 Since ek1R  HK = L, by hypothesis 

RH and K 

(7) ∴(k1 k2) L  (k 1L) (k2 L) 

 (6) and (7) gives 

 (k1 k2) L = (k1 L) (k2 L). 

 ∴L = HK is normal in K. 

 ie, (H,K) is normal in K. 

 Also if : G G

 is a homomorphism with Kernel 

K, then G/K is isomorphic to G

 in groups. This result 

holds for quasi- groups also. 

 Define: HK K/H K by 

 (hk) = h (H  K) 

 Then K = {hk :  (hk) = H K} 

 Appling the above result,  

 HK/H K/HK. 

 Hence the result. 

IV. ABELIAN – QUASI – GROUPS :- 

 In this section we consider quasi-groups satisfying 

the following equation. Let G be a quasi – group and a,b,c,d 

 G. Then we define G an Abelian-quasi-group if 

 (ab) (cd) = (ac) (bd). 

We call the above equation, the Associative Law III. 

 If a is any element of G, any element of the cyclic – 

quasi –group generated by a, will be called the power of a, 

and is denoted by r (a) where r is the number of factors a 

which occur. We can then prove the following theorem 

which generalises the law 

 (ab)
r
 = a

r
 b

r
 of Abelian groups. 

Theorem4.1:- 

 It a and b are any two elements of an Abelian-quasi-

group, and if n (a) is any power of a, then 

 n(ab) = n (a)n  (b). 

Proof:- 

 Suppose n = 2; then 

 2 (ab) = (ab)
2
 

 = (ab) (ab) 

 = (a a) (b b)  [ G is an abelian quasi-

group] 

 = a
2
 b

2
 

 = 2 (a) 2 (b). 

Clearly the theorem holds for n =2. 

Assume that the theorem is true for all powers r<n. Since 

every power n (a) can be written as the product of two such 

powers, for some r less than n we have  
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 n (ab) =r(ab)n-r(ab) 

 = [r(a) r (b)] [n-r(a) n-r (b)] 

 = [r (a) n-r (a)  ] [r (b)n-r (b)] 

 [G is an abelian – quasi – group) 

 = n (a) n (b). 

 ∴n (ab) = n(a) n(b). 

The theorem holds for power with n factors, and therefore 

holds in general. 

Corollary :-If n (a), m (a) are any two powers of a, then  

   n [m (a)] = m [n (a)]. 

Proof :- 

 We have 

 n (ab) = n(a) n (b). 

Putting b = a in the above equation, we have  

 n (a)
2
 = [n(a)]

2
. 

Then 

  n [m(a)] = n [a
m
] 

  = [n (a)]
m
 

  = m [n (a)]. 

 ∴n [m(a)]   = m [n (a)]. 

 Hence the result. 

Theorem 4.2 :- 

 In an Abelian – quasi-group, the set of all sub-quasi-

groups which contain a given minimal unit sub-quasi-group, 

forms a Dedekind structure. 

Proof :- 

 First we have to prove that in an abelian – quasi-

group all sub – quasi-groups are normal. 

  Let ah1aH, bh2bH 

  (ah1) (bh2) = (ab) (h1 h2) (G is abelian) 

   = (ab) h3(ab)H where h3 = h1 h2. 

   ∴(aH) (bH) = (ab)H. 

 ∴ In an abelian-quasi-group all sub-quasi-groups are 

normal. Also G contains a minimal unit sub-quasi-group. 

From theorem 3.2it follows that the normal sub-quasi-

groups of G which contain right unit R form a Dedekind 

structure. 

Hence the theorem. 

Theorem 4.3:- 

 If G is Abelian, the quotient quasi-group G/R has a 

unique right unit R. Every left coset of R is also a right coset 

of R. The mapping aR Ra is an automorphism of G/R and 

is equivalent to left multiplication by the right unit R. 

Finally if aR = Ra for all a in G then G/R is a group. 

Proof :- 

 We have 

(aR) R = a [R fa (R)] = aR for all a  G. 

This implies that R is a right unit of G/H. 

Since G/R is a quasi-group, R is unique. Next we have to 

show that 

 : aR Ra is an automorphism. 

Since (aR) = (bR) ⇒ aR = bR, is one – one. 

 is a homorphism, for, 

 [(aR) (bR)] =[(ab) R]  

  = Rab 

  = (Ra) (Rb) 

  = (aR) (bR). 

Also since  is onto, it is an automorphism. 

From equation (1) of theorem 3.2it follows that  

 R (cR) = (cR)
s
= f

-1
a (c) R, for all a and c in G. 

Putting a =ea and d=ec  in associative law III we find 

f
-1

a (b)c =f
-1

a (c) (bec) 

Let b run through all elements of R and we have  

 Rc = f
-1

a (c) R and therefore 

 R (cR) = (cR)
s
 = Rc. 

Hence the automophism  : aR  Ra is equivalent to the 

left-multiplication by the right unit R. 

 To show that G/R is a group if aR = Ra, for all a  G. 
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 Since G is a quasi-group and a, b,  G ⇒ ab  G. 

 Let aR, bR G/R 

Then we have 

 (aR) (bR) = (ab) R G/R. 

Thus G/R is closed under multiplication. 

Further 

 R (cR) = Rc= cR. 

Also  (cR) R = c[R fa (R)]= cR 

∴R (cR) = cR = (cR)R. 

∴R is the identity in G/R 

Also 

 [(aR) (bR)] (cR) = [(aR) (bR)] [R (cR)] 

  = [(aR) (bR)] [(ae R) 

(cR)] 

  = (aae) R [(bR) (cR)] 

  = (aR) [(bR) (cR)] 

∴[(ab) c] R = [a (bc)] R. 

Associativity holds in G/R. 

Hence if aR = Ra for all a in G then G/R is a group.  

Hence the theorem. 

Also we can show that the set H of all elements which 

commute with the unit element e, is a group, the largest 

group contained in G. 
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