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ABSTRACT: In this thesis we discuss the newly introduced concept of cone metric spaces, prove some fixed point theorems existence results 

of contractive mappings defined on such cone metric space and improve some well-known results in the normal case. The purpose of this paper 

is to establish the generalization of contractive type mappings on complete cone metric spaces. Also all the results in this paper are new. The 

main aim of this paper is to prove fixed point theorems is cone metric spaces which extend the Banach contraction mapping and others. This is 

achieved by introducing different kinds of Cauchy sequences in cone metric spaces.  

Keywords: Banach space, fixed point theorem, cone metric space, Cauchy sequence, contraction mapping. 

__________________________________________________*****_________________________________________________ 

I. INTRODUCTION 

Let 𝐸 be a real Banach Space. A nonempty convex closed subset 𝑃 ⊂ 𝐸 is called cone in 𝐸 if it satisfies: 

1) 𝑃 is closed, non-empty and 𝑃 ≠ {0}, 

2) 𝑎, 𝑏𝜖ℝ, 𝑎, 𝑏 ≥ 0 and 𝑥, 𝑦𝜖𝑃 imply that 𝑎𝑥 + 𝑏𝑦𝜖𝑃, 

3) 𝑥𝜖𝑃 and – 𝑥𝜖𝑃 imply that 𝑥 = 0. 

The space 𝐸 can be partially ordered by the cone 𝑃 ⊂ 𝐸; that is, 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥𝜖𝑃. Also we write 𝑥 ≪ 𝑦. if 

𝑦 − 𝑥𝜖𝑃0, where 𝑃0  denotes the interior of 𝑃.A cone 𝑃 is called normal if there exists a constant 𝐾 > 0 such that 0 ≤ 𝑥 ≤ 𝑦 

implies ||𝑥|| ≤ 𝐾||𝑦||. 

In the sequel, suppose that 𝐸 is a real Banach space. 𝑃 is a cone in 𝐸 with nonempty interior 𝑃0 ≠ 0 and ≤ is the partial 

ordering with respect to 𝑃. A Cone metric spaces is Hausdorff and so has the property that any singleton is a closed subset of the 

space. In applications to computer science, especially to computer domains, a space induced by a distance function in which a 

singleton need not be closed is used. A partial cone metric space is such a space which might have a great application potential in 

computer science. 

In Chapter I, refreshes some basic concepts of the metric space. 

In Chapter II, deals with the concept of cone metric on poset. 

In Chapter III, discuss about ciric’s fixed point theorem in a cone metric space. 

In Chapter IV, Illustrates the metrizability of cone metric spaces 

In Chapter V, discusses the fixed point theorems in partial cone metric spaces. 

 

PRELIMINARIES 

Definition 1.1 

     Let 𝑋 be a nonempty set. Assume that the mapping 𝑑: 𝑋 × 𝑋 → 𝐸 satisfies 

i) 0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦𝜖𝑋 and 𝑑(𝑥, 𝑦) = 0 𝑖𝑓𝑓𝑥 = 𝑦, 

ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦𝜖𝑋, 

iii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧𝜖𝑋. 

Then d is the called a cone metric on 𝑋, and (𝑋, 𝑑) is called cone metric space.  

 

Definition 1.2 

If (𝑋, ⊑) is a partially ordered set and𝑓: 𝑋 → 𝑋, f is monotone  

non-decreasing if 𝑥, 𝑦𝜖𝑋, 𝑥 ⊑ 𝑦 ⇒ 𝑓𝑥 ⊑ 𝑓𝑦. 

 

Definition 1.3 

           The cone 𝑃 is a called regular if every increasing sequence which is bounded form above is convergent. 
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 If {𝑥𝑛 } is a sequence such that 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑦 for some y𝜖E, then there is x𝜖E such that lim𝑛→∞ ||𝑥𝑛 − 𝑥|| = 0.  

Equivalently the cone 𝑃 is regular if and only if every decreasing sequence which bounded from below is convergent. It 

has been mentioned that every regular cone is a normal. 

 

Definition 1.4 

P called minihedral cone if 𝑠𝑢𝑝{𝑥, 𝑦} exists for all 𝑥, 𝑦𝜖𝐸, and strongly minihedral  if every subset of 𝐸 which is 

bounded above has a supremum.  

 If cone 𝑃 be strongly minihedral, then every subset of 𝑃 has infrimum. 

 

CONE METRIC ON POSET 

Theorem 2.1  

Let (𝑋, ⊑) be a partially ordered set and suppose there exists a cone metric 𝑑𝜖𝑋 such that (𝑋, 𝑑) is a complete cone 

metric space which the (ID) property holds. 

  Let  𝑓: 𝑋 → 𝑋 be a continuous and non-decreasing mapping such that 

𝜓 𝑑 𝑓𝑥, 𝑓𝑦  ≤ 𝜓 𝑑 𝑥, 𝑦  − 𝜑 𝑑 𝑥, 𝑦   

for 𝑥 ⊑ 𝑦, where 𝜓 and 𝜑 are altering distance functions. If there exists 𝑥0𝜖𝑋 with 𝑥0 ⊑ 𝑓𝑥0 then 𝑓 has a unique fixed point. 

Proof  

 If 𝑥0 = 𝑓𝑥0  then the proof is finished.  

 Suppose that 𝑥0 ≠ 𝑓𝑥0 .  

 Since𝑥0 ⊑ 𝑓𝑥0 and 𝑓 is a non-decreasing function,  

                                𝑥0 ⊑ 𝑓𝑥0 ⊑ 𝑓2𝑥0 ⊑ 𝑓3𝑥0 …. 

 Put 𝑥𝑛+1: = 𝑓𝑥𝑛 = 𝑓𝑛𝑥0 and 𝑎𝑛 : =  𝑑(𝑥𝑛+1 , 𝑥𝑛). 

 Then for 𝑛 ≥ 1 

𝜓 𝑑 𝑥𝑛+1 , 𝑥𝑛  = 𝜓 𝑑 𝑓𝑥𝑛 , 𝑓𝑥𝑛−1  ≤ 𝜓 𝑑 𝑥𝑛 , 𝑥𝑛−1  − 𝜑( 𝑑(𝑥𝑛 , 𝑥𝑛−1)), 

 Therefor 0 ≤ 𝜓(𝑎𝑛) ≤ 𝜓(𝑎𝑛−1) − 𝜑(𝑎𝑛−1) ≤ 𝜓(𝑎𝑛−1)    (1) 

 Since𝑥𝑛 ⊑ 𝑥𝑛+1 ⊑ 𝑥𝑛+2 by the (ID) property  

 It follows that, 

                                                            𝑎𝑛 ≤ 𝑎𝑛+1  (2) 

 or                                           𝑎𝑛+1 ≤ 𝑎𝑛    (3) 

If (2) holds, since 𝜓 is non-decreasing by (1)  

It gives that 

                    0 ≤ 𝜓 𝑎𝑛 ≤ 𝜓 𝑎𝑛−1 − 𝜑 𝑎𝑛−1 ≤ 𝜓 𝑎𝑛 − 𝜑 𝑎𝑛−1 ≤ 𝜓(𝑎𝑛 )    (4)        

This implies that 𝜑(𝑎𝑛−1) = 0 and so 𝑎𝑛−1 = 0 for 𝑛 ≥ 1 

Thus  𝑥𝑛 = 𝑥𝑛−1 = 𝑓𝑥𝑛−1 for 𝑛 ≥ 1 are fixed points of 𝑓.                                 

If (3) holds, since 𝜓 and 𝜑 are non-decreasing by, relation (1) and induction, 

It implies that, 

                      𝜑 𝑎𝑛+1 ≤ 𝜑 𝑎𝑛 ≤ 𝜓 𝑎𝑛 ≤ 𝜓 𝑎𝑛−1 − 𝜑 𝑎𝑛−1  

≤ 𝜓 𝑎𝑛−1 − 𝜑 𝑎𝑛  

                      ≤ 𝜓 𝑎𝑛−2 − 𝜑 𝑎𝑛−2 − 𝜑 𝑎𝑛 . 

             ≤ 𝜓 𝑎𝑛−2 − 2𝜑 𝑎𝑛 ≤ ⋯ 

 ≤ 𝜓 𝑎0 − 𝑛𝜑 𝑎𝑛  

Then  0 ≤ 𝜑 𝑎𝑛 ≤
1

1+𝑛
𝜓 𝑎0  for all 𝑛. 

This implies that 𝜑 lim𝑛→∞ 𝑎𝑛  𝑖𝑛 𝑃 ∩ −𝑃 and 𝜑 lim𝑛→∞ 𝑎𝑛 = 0 and  

since 𝜑 is altering distance function. 

Then  lim𝑛→∞ 𝑎𝑛 = 0, and 

lim
𝑛→∞

𝑑(𝑥𝑛+1, 𝑥𝑛 ) = 0.              (5) 

Now show that the sequence {𝑥𝑛} is cauchy. 

 

Claim: 

       For every 𝑐 𝑖𝑛 𝐸 and 𝑐 ≫ 0 there exists 𝑁 such that 𝑑(𝑥𝑛+2, 𝑥𝑛 ) ≪ 𝑐 for every 𝑛 ≥ 𝑁. 

 Choose 𝑐 ≫ 0, by (5) there exists 𝑁 such that 𝑑(𝑥𝑛+1, 𝑥𝑛 ) ≪
𝑐

2
  for all 𝑛 ≥ 𝑁. 
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It makes that, 

        𝑑 𝑥𝑛+2, 𝑥𝑛 ≤ 𝑑 𝑥𝑛+2, 𝑥𝑛+1 + 𝑑 𝑥𝑛+1 , 𝑥𝑛 ≪ 𝑐 for every 𝑛 ≥ 𝑁.  

Therefore, 

For some 𝑁 and 𝑑 𝑥𝑛+2, 𝑥𝑛 ≪ 𝑐 for every 𝑛 ≥ 𝑁.  

Now by induction 𝑑(𝑥𝑛+𝑚 , 𝑥𝑛 ) ≪ 𝑐 for every 𝑛 ≥ 𝑁 and for all integer number 𝑚 ≥ 1.  

    The sequence {𝑥𝑛 } is Cauchy and since (𝑋, 𝑑) is complete, and thus there exists 𝑥∗ 𝑖𝑛 𝑋 

such that 𝑥𝑛 → 𝑥∗ and on the other hand 𝑓 is continuous and  𝑥𝑛+1 = 𝑓𝑥𝑛 . 

 Then 𝑥∗ = 𝑓𝑥∗.  

For uniqueness let 𝑥 = 𝑓𝑥 and 𝑦 = 𝑓𝑦, and 

 𝜓 𝑑 𝑥, 𝑦  = 𝜓 𝑑 𝑓𝑥, 𝑓𝑦  ≤ 𝜓 𝑑 𝑥, 𝑦  − 𝜑(𝑑(𝑥, 𝑦)) 

The last inequality gives us 𝜑 𝑑 𝑥, 𝑦  = 0 and by property of the altering distance functions this implies 𝑑 𝑥, 𝑦 = 0.  

Therefore 𝑥 = 𝑦. 

In the next theorem, 

The (Id) property is replaced by strongly minihedrallity of the cone. 

Hence the proof. 

 

CIRIC’S FIXED POINT THEOREM IN A CONE METRIC SPACE 

Theorem (Fixed Point Thorem) 3.1 

 Let (𝑋, 𝑑) be a complete cone metric space, 𝑃 be a normal cone with normal constant 𝑘(𝑘 ≥ 1). 

 Suppose the mapping 𝑇: 𝑋 → 𝑋 satisfies the following constractive condition:  

𝑑 𝑇𝑥, 𝑇𝑦 ≤ 𝐴1 𝑥, 𝑦 𝑑 𝑥, 𝑦 + 𝐴2 𝑥, 𝑦 𝑑 𝑥, 𝑇𝑥 + 𝐴3 𝑥, 𝑦 𝑑 𝑦, 𝑇𝑦  

                                     +𝐴4 𝑥, 𝑦 𝑑 𝑥, 𝑇𝑦 + 𝐴4 𝑥, 𝑦 𝑑 𝑦, 𝑇𝑥 ,                                (9) 

for all 𝑥, 𝑦 in 𝑋, where 𝐴𝑖 : 𝑋 × 𝑋 → ℒ(𝐸), 𝑖 = 1,2,3,4.  

Further, assume that for all 𝑥, 𝑦 𝑖𝑛 𝑋,    

   ∃ 𝛼 ∈ [0,1/𝑘)|   ∥ 𝐴𝑖 𝑥, 𝑦 ∥ +∥ 𝐴4 𝑥, 𝑦 ∥≤ 𝛼4
𝑖=1                                         (10) 

                          ∃ 𝛽 ∈ [0,1)| ∥ 𝑠(𝑥, 𝑦) ∥≤ 𝛽 (11)                                                                                (𝐴1 𝑥, 𝑦 +𝐴2 𝑥, 𝑦 ) 𝑃 ⊆ 𝑃 

                (12)                   𝐴2 𝑥, 𝑦  𝑃 ⊆ 𝑃                                                      (13) 

 𝐴4 𝑥, 𝑦 (𝑃) ⊆ 𝑃       (14)  

 𝐼 − 𝐴3 𝑥, 𝑦 − 𝐴4 𝑥, 𝑦  
−1

 𝑃 ⊆ 𝑃                         (15) 

Here, 𝑆: 𝑋 × 𝑋 → ℒ 𝐸 is given by: 

𝑆 𝑥, 𝑦 =  𝐼 − 𝐴3 𝑥, 𝑦 − 𝐴4 𝑥, 𝑦  
−1

 𝐴1 𝑥, 𝑦 + 𝐴2 𝑥, 𝑦 + 𝐴4 𝑥, 𝑦  ,     

for all 𝑥, 𝑦 𝑖𝑛 𝑋. 

Then, 𝑇has a unique fixed point 

Proof. 

Let 𝑥 ∈ 𝑋 be arbitrary and define the sequence (𝑥𝑛 )𝑛  ∈ ℕ ⊂ 𝑋 by: 

𝑥0 = 𝑥, 𝑥1 = 𝑇𝑥0 , … . 𝑥𝑛 = 𝑇𝑥𝑛−1 = 𝑇𝑛𝑥0 , …. 

By (9) it gets that: 

𝑑 𝑥𝑛 , 𝑥𝑛+1 = 𝑑 𝑇𝑥𝑛−1 , 𝑇𝑥𝑛   ≤ 𝐴1 𝑥𝑛−1 , 𝑥𝑛 𝑑 𝑥𝑛−1 , 𝑥𝑛 + 𝐴2 𝑥𝑛−1, 𝑥𝑛 𝑑 𝑥𝑛−1, 𝑥𝑛  

                                        +𝐴3 𝑥𝑛−1, 𝑥𝑛 𝑑 𝑥𝑛 , 𝑥𝑛+1 + 𝐴4 𝑥𝑛−1, 𝑥𝑛 𝑑 𝑥𝑛−1, 𝑥𝑛+1  

+𝐴4 𝑥𝑛−1, 𝑥𝑛 𝑑 𝑥𝑛 , 𝑥𝑛  

            =  𝐴1 𝑥𝑛−1, 𝑥𝑛 +  𝐴2 𝑥𝑛−1, 𝑥𝑛  𝑑 𝑥𝑛−1 , 𝑥𝑛  

                                           + 𝐴3(𝑥𝑛−1, 𝑥𝑛 )𝑑(𝑥𝑛 , 𝑥𝑛+1) +  𝐴4(𝑥𝑛−1, 𝑥𝑛 )𝑑(𝑥𝑛−1, 𝑥𝑛+1). 

Using the triangular inequality, it given that: 

 𝑑 𝑥𝑛−1 , 𝑥𝑛+1 ≤ 𝑑 𝑥𝑛−1 , 𝑥𝑛 + 𝑑 𝑥𝑛 , 𝑥𝑛+1 , 

then  

 𝑑(𝑥𝑛−1 , 𝑥𝑛) + 𝑑(𝑥𝑛 , 𝑥𝑛+1)  − 𝑑(𝑥𝑛−1 , 𝑥𝑛+1) 𝑖𝑛 𝑃. 

From (14), it follows that 

 𝐴4 𝑥𝑛−1 , 𝑥𝑛   𝑑 𝑥𝑛−1, 𝑥𝑛 +  𝑑 𝑥𝑛 , 𝑥𝑛+1 −  𝑑 𝑥𝑛−1 , 𝑥𝑛+1   𝑖𝑛 𝑃, 

and 

𝐴4 𝑥𝑛−1, 𝑥𝑛 𝑑 𝑥𝑛−1 , 𝑥𝑛+1 ≤ 𝐴4 𝑥𝑛−1 , 𝑥𝑛 𝑑 𝑥𝑛−1 , 𝑥𝑛  

                                                             + 𝐴4(𝑥𝑛−1, 𝑥𝑛 ) 𝑑(𝑥𝑛 , 𝑥𝑛+1). 
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Then it implies that: 

𝑑(𝑥𝑛 , 𝑥𝑛+1)≤(𝐴1(𝑥𝑛−1, 𝑥𝑛 )+𝐴2(𝑥𝑛−1 , 𝑥𝑛 ) 

                  +𝐴4(𝑥𝑛−1, 𝑥𝑛 ))𝑑(𝑥𝑛−1, 𝑥𝑛 )+(𝐴3(𝑥𝑛−1, 𝑥𝑛 ) 

           +𝐴4(𝑥𝑛−1, 𝑥𝑛 ))𝑑(𝑥𝑛 , 𝑥𝑛+1). 

Then, 

 𝐼 − 𝐴3 𝑥𝑛−1 , 𝑥𝑛 𝐴4 𝑥𝑛−1 , 𝑥𝑛  𝑑(𝑥𝑛 , 𝑥𝑛+1) ≤(𝐴1(𝑥𝑛−1, 𝑥𝑛 )+𝐴2 𝑥𝑛−1, 𝑥𝑛  

+ 𝐴4(𝑥𝑛−1, 𝑥𝑛 ))𝑑(𝑥𝑛−1 , 𝑥𝑛). 

Using (15), 𝑑(𝑥𝑛 , 𝑥𝑛+1)  ≤ 𝑆(𝑥𝑛−1, 𝑥𝑛 )(𝑑(𝑥𝑛−1, 𝑥𝑛 ).                                                     (16) 

It is not difficult to see that under hypotheses (12),(14) and (15),  

  𝑆(𝑥, 𝑦)(𝑃)  ⊆ 𝑃, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥, 𝑦 𝑖𝑛 𝑋. 

Using this remark, (16) and proceeding by iterations,  

d(𝑥𝑛 ,𝑥𝑛+1)≤  𝑆(𝑥𝑛−1,𝑥𝑛 ) 𝑆 𝑥𝑛−2, 𝑥𝑛−1 … 𝑆 𝑥0 , 𝑥1  𝑑 𝑥0 , 𝑥1 , 

which implies by (11) that: 

∥d(𝑥𝑛 ,𝑥𝑛+1)∥≤ k ∥ 𝑆 𝑥𝑛−1,𝑥𝑛 ∥∥ 𝑆 𝑥𝑛−2, 𝑥𝑛−1 ∥……∥ 𝑆 𝑥0 , 𝑥1 ∥∥ 𝑑 𝑥0 , 𝑥1 ∥                        ≤ 𝑘𝛽𝑛 ∥ 𝑑 𝑥0, 𝑥1 ∥. 

For any positive integer p, 

  𝑑(𝑥𝑛 , 𝑥𝑛+𝑝)  ≤  𝑑(𝑥𝑛+𝑖−1, 𝑥𝑛+𝑖
𝑝
𝑖=1 ), 

which implies that: 

∥ 𝑑(𝑥𝑛 , 𝑥𝑛+𝑝) ∥ ≤ 𝑘  ∥ 𝑑(𝑥𝑛+𝑖−1 , 𝑥𝑛+𝑖

𝑝

𝑖=1

) ∥ 

                                ≤ 𝑘2  𝛽𝑛+𝑖−1 ∥ 𝑑(𝑥0 , 𝑥1

𝑝

𝑖=1

∥ 

                                                                ≤ 𝑘2 𝛽𝑛

1−𝛽
∥ 𝑑 𝑥0, 𝑥1 ∥                                   (17) 

Since 𝛽 ∈   0, 1 , 𝛽𝑛  → 0 𝑎𝑠 𝑛 → +∞.  

So from (17) it follows that the sequence(𝑥𝑛 )𝑛∈𝑁  is Cauchy. Since (𝑋, 𝑑) is complete, there is a point 𝑢 ∈ 𝑋 such that: 

lim
𝑛→+∞

𝑑 𝑇𝑥𝑛 , 𝑢 = lim
𝑛→+∞

𝑑 𝑥𝑛 , 𝑢     = lim
𝑛→+∞

𝑑 𝑇𝑥𝑛 , 𝑥𝑛+1 = 0                        (18) 

Now, using the contractive condition (9),  

𝑑(𝑇𝑢, 𝑇𝑥𝑛 ) ≤  𝐴1(𝑢, 𝑥𝑛 )d(𝑢, 𝑥𝑛 )+𝐴2(𝑢, 𝑥𝑛 ) 𝑑(𝑢, 𝑇𝑢) 

+ 𝐴3 𝑢, 𝑥𝑛 𝑑 𝑥𝑛 , 𝑥𝑛+1 + 𝐴4 𝑢, 𝑥𝑛 𝑑 𝑥𝑛 , 𝑥𝑛+1  

+𝐴4 𝑢, 𝑥𝑛 𝑑 𝑥𝑛 , 𝑇𝑢 . 

By the triangular inequality, 

  𝑑 𝑢, 𝑇𝑢 ≤ 𝑑 𝑢, 𝑥𝑛+1 + 𝑑 𝑥𝑛+1, 𝑇𝑢  

𝑑 𝑥𝑛 , 𝑇𝑢 ≤ 𝑑 𝑥𝑛 , 𝑇𝑥𝑛  + 𝑑 𝑇𝑥𝑛 , 𝑇𝑢 . 

By (13) and (14), 

  𝐴2(𝑢, 𝑥𝑛)𝑑 𝑢, 𝑇𝑢 ≤ 𝐴2(𝑢, 𝑥𝑛 )(𝑑 𝑢, 𝑥𝑛+1 + 𝑑 𝑥𝑛+1, 𝑇𝑢 ) 

              𝐴4 𝑢, 𝑥𝑛 𝑑 𝑥𝑛 , 𝑇𝑢 ≤ 𝐴4 𝑢, 𝑥𝑛 𝑑 𝑥𝑛 , 𝑇𝑥𝑛 + 𝐴4 𝑢, 𝑥𝑛 𝑑 𝑇𝑥𝑛 , 𝑇𝑢 . 

Then  

𝑑 𝑇𝑢, 𝑇𝑥𝑛  ≤  𝐴1 𝑢, 𝑥𝑛 + 𝑑 𝑢, 𝑥𝑛 +  (𝐴2 𝑢, 𝑥𝑛 + 𝐴4 𝑢, 𝑥𝑛 )𝑑 𝑢, 𝑥𝑛+1  

          +(𝐴2 𝑢, 𝑥𝑛 + 𝐴4 𝑢, 𝑥𝑛 )𝑑 𝑥𝑛+1, 𝑇𝑢  + ( 𝐴3 𝑢, 𝑥𝑛 + 𝐴4 𝑢, 𝑥𝑛 )𝑑 𝑥𝑛 , 𝑥𝑛+1  

Using (10), this inequality implies that: 

∥ 𝑑 𝑇𝑢, 𝑇𝑥𝑛 ∥≤
𝑘𝛼

1−𝑘𝛼
(∥ 𝑑 𝑢, 𝑥𝑛 ∥ +∥ 𝑑 𝑢, 𝑥𝑛+1 ∥ +∥ 𝑑 𝑥𝑛 , 𝑥𝑛+1 ∥). 

From (18), it follows immediately that: 

                                                                lim𝑛→+∞ 𝑑 𝑇𝑢, 𝑇𝑥𝑛 = 0.                            (19)         

Then, (18), (19) and the uniqueness of the limit imply that 𝑢 = 𝑇𝑢, 𝑡ℎ𝑒𝑛 𝑢 is a fixed point of 𝑇 . and  𝑇 has least one fixed point 

𝑢 ∈ 𝑋. 

Now, if 𝑣 ∈ 𝑋 is another fixed point of 𝑇 , by (9),  

  𝑑 𝑢, 𝑣 = 𝑑 𝑇𝑢, 𝑇𝑣 ≤  𝐴1 𝑢, 𝑣 𝑑 𝑢, 𝑣 + 2𝐴4 𝑢, 𝑣 𝑑 𝑢, 𝑣 , 

Which implies that: 

            ∥ 𝑑 𝑢, 𝑣 ∥ ≤ 𝑘 ∥ 𝐴1 𝑢, 𝑣 ∥ +2 ∥ 𝐴4 𝑢, 𝑣 ∥ ∥ 𝑑 𝑢, 𝑣 ∥≤ 𝑘𝛼 ∥ 𝑑 𝑢, 𝑣 ∥, 
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 1 − 𝑘𝛼 ∥ 𝑑 𝑢, 𝑣 ∥≤ 0. 

Since 0 ≤ 𝛼 <
1

𝑘
 , we get 𝑑(𝑢, 𝑣) = 0, i.e., 𝑢 = 𝑣. So the proof of the theorem is completed. 

 

METRIZABILITY OF CONE METRIC SPACES 

Theorem 4.1 

For every cone metric 𝐷: 𝑋 × 𝑋 → 𝐸 there exists metric 

𝑑: 𝑋 × 𝑋 → ℝ+ which is equivalent to 𝐷 on 𝑋. 

 

 

Proof: 

Define 𝑑 𝑥, 𝑦 = inf ∥ 𝑢 ∥: 𝐷 𝑥, 𝑦 ≤ 𝑢 . We shall to prove that 𝑑 is an equivalent metric to 𝐷. If 𝑑 𝑥, 𝑦 = 0 then there 

exists 𝑢𝑛  such that∥ 𝑢𝑛 ∥→ 0 and 𝐷 𝑥, 𝑦 ≤ 𝑢𝑛 .  

And 𝑢𝑛 → 0 and consequently for all 𝑐 ≫ 0 there exists  𝑁 ∈ ℕ such that 𝑢𝑛 ≪ 𝑐 for all 𝑛 ≥ 𝑁. 

 Thus for all 𝑐 ≫ 0, 0 ≤ 𝐷(𝑥, 𝑦) ≪  𝑐. 

 Namely 𝑥 = 𝑦.  If 𝑥 = 𝑦 then 𝐷(𝑥, 𝑦) = 0 which implies that 𝑑 𝑥, 𝑦 ≤∥ 𝑢 ∥ for all 0 ≤ 𝑢. 

 Put 𝑢 = 0 it implies 𝑑(𝑥, 𝑦) ≤ ∥ 0 ∥= 0, on the other hand 0 ≤ 𝑑(𝑥, 𝑦), 

Therefore 𝑑(𝑥, 𝑦) = 0. 

It is clear that 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 

To prove triangle inequality, for 𝑥, 𝑦, 𝑧 ∈  𝑋, 

∀𝜖 > 0 ∃𝑢1  ∥ 𝑢1 ∥< 𝑑 𝑥, 𝑧 + 𝜖, 𝐷(𝑥, 𝑧) ≤ 𝑢1, 

∀𝜖 > 0 ∃𝑢2  ∥ 𝑢2 ∥< 𝑑(𝑧, 𝑦) + 𝜖, 𝐷(𝑧, 𝑦) ≤ 𝑢2. 

But 𝐷 𝑥, 𝑦 ≤ 𝐷 𝑥, 𝑧 + 𝐷(𝑧, 𝑦) ≤  𝑢1 + 𝑢2, 

 Therefore  

𝑑(𝑥, 𝑦) ≤ ∥ 𝑢1 + 𝑢2 ∥ ≤ ∥ 𝑢1 ∥ +∥ 𝑢2 ∥ ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) + 2𝜖. 

Since 𝜖 > 0 was arbitrary so 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). 

Claim:  

 For all  𝑥𝑛  ⊆ 𝑋 𝑎𝑛𝑑 𝑥 ∈ 𝑋, 𝑥𝑛 → 𝑥 in (𝑋, 𝑑) if and only if 𝑥𝑛 → 𝑥 in (𝑋, 𝐷). 

∀𝑛, 𝑚 ∈ 𝑁 ∃𝑢𝑛𝑚 such that ∥ 𝑢𝑛𝑚 ∥ < 𝑑 𝑥𝑛 , 𝑥 +
  1

m
, 𝐷 𝑥𝑛 , 𝑥 𝑢𝑛𝑚 . 

𝑃𝑢𝑡 𝑣𝑛 : = 𝑢𝑛𝑛  𝑡ℎ𝑒𝑛 ∥ 𝑣𝑛 ∥< 𝑑(𝑥𝑛 , 𝑥) +
1

𝑛
 

and 𝐷(𝑥𝑛 , 𝑥) ≤ 𝑣𝑛 . Now if 𝑥𝑛 → 𝑥 in (𝑋, 𝑑) then 𝑑(𝑥𝑛 , 𝑥) → 0 and  𝑣𝑛 → 0. Therefore for all 𝑐 ≫ 0 there exists 𝑁 ∈ ℕ such that 

𝑣𝑛 ≪ 𝑐 for all 𝑛 ≥ ℕ. 

This implies that 𝐷 𝑥𝑛 , 𝑥 ≪ 𝑐for all 𝑛 ≥ ℕ. Namely 𝑥𝑛 → 𝑥 in 𝑋, 𝐷 . 

Conversely,  

For every real 𝜖 > 0, choose 𝑐 ∈ 𝐸 with 𝑐 ≫ 0  

And ∥ 𝑐 ∥ <  𝜖. 

Then there exists 𝑁 ∈ ℕ such that 𝐷 𝑥𝑛 , 𝑥 ≪ 𝑐 for all 𝑛 ≥  𝑁.  

This means that for all 𝜖 > 0 there exists 𝑁 ∈ ℕ such that d(𝑥𝑛 , 𝑥) ≤∥c∥< ε for all  𝑛 ≥ 𝑁. 

Therefore 𝑑 𝑥𝑛 , 𝑥 → 0 as 𝑛 → ∞ so𝑥𝑛 → 𝑥 𝑖𝑛 (𝑋, 𝑑). 

 

FIXED POINT THEOREMS IN PARTIAL CONE METRICSPACES 

Theorem5.1 

 Let (𝑋, 𝑝) be a partial cone metric space and P be a normal cone 

with normal constant 𝐾, then  𝑋, 𝑝  is 𝑇0. 

Proof. 

Suppose 𝑝: 𝑋 × 𝑋 → 𝐸is a partial cone metric, and  

suppose𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦, from (p1) and (p2)  

𝑝(𝑥, 𝑥) < 𝑝(𝑥, 𝑦) or 𝑝(𝑦, 𝑦) < 𝑝(𝑥, 𝑦). 

Suppose  𝑝 𝑥, 𝑥 < 𝑝 𝑥, 𝑦  and 0 < 𝑝 𝑥, 𝑦 − 𝑝 𝑥, 𝑥 ,  

0 <∥ 𝑝(𝑥, 𝑦) − 𝑝(𝑥, 𝑥) ∥= 𝛿𝑥 . 

For 𝛿𝑥 > 0, choose 𝑐𝑥 ∈ 𝑖𝑛𝑡𝑃with ∥ 𝑐𝑥 ∥< 𝛿𝑥 .  
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Then 𝑥 ∈ 𝐵𝑝 𝑥, 𝑐𝑥 and𝑦 ∉ 𝐵𝑝 𝑥, 𝑐𝑥 . 

Consequently (𝑋, 𝑝) partial cone metric space is𝑇0. 

 

II. CONCLUSION 

The present work contains not only an improvement and a generalization of the concept of a partial metric, as it has been 

presented in a more general setting, a partial cone metric space which is more general than the partial metric space.  But also an 

investigation of some fixed point theorems one of which is also new for a partial metric space. 

 So that one may expect it to be more useful tool in the field of topology in modeling various problems occurring in many 

areas of science, computer science, information theory, and biological science.  

On the other hand, a concept of fuzzy partial cone metric is investigated fixed points theorems for fuzzy functions. 

 However, due to the change in settings, the definitions and methods of proofs will not always be analogous to those of 

the present results. 
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