ISSN: 2454-4248 24 – 25

Comparison of Bandwidth of MALN with Four Tree (Ft) Network

Amardeep Gupta Head, Department of Computer Sc and IT DAV College, Amritsar

Introduction: In this paper Modified Alpha Network has been compared with the existing Four Tree Network on the basis of different Performance Parameters.

Keywords: MALN, ALN, FT, Performance Parameters, Bandwidth, Probability of Acceptance

Technology, 11111, 11111, 111, 1 elyonmance I arameters, Banamani, 1700abini, 6, 11eeepian

Bandwidth and Probability of Acceptance

The parameters Bandwidth and Probability of Acceptance have been evaluated using formulas and the values have been shown in Table 1 and Table 2.

Table 1: Bandwidth comparison of MALN, ALN and FT

Bandwidth P req_gen	MALN	ALN	FT
0.1	1.476	0.9798	1.2
0.2	2.735	1.6792	2.1264
0.3	3.818	2.2118	3.0144
0.4	4.755	2.6332	3.8032
0.5	5.571	2.9826	4.5072
0.6	6.285	3.2792	5.1344
0.7	6.911	2.5374	5.696
0.8	7.461	3.7644	6.1968
0.9	7.944	3.9654	6.6432
1.0	8.369	4.1440	7.0416

Table 2 shows the compared values of Probability of Acceptance of MALN, ALN and FT.

Table 2: Probability of Acceptance comparison of MALN, ALN and FT

Probability of Acceptance Preq_gen	MALN	ALN	FT
0.1	0.9225	0.6123	0.75
0.2	0.8547	0.5247	0.6645
0.3	0.7954	0.4607	0.628
0.4	0.7430	0.4114	0.5942
0.5	0.6964	0.3728	0.5634
0.6	0.6547	0.3415	0.5348
0.7	0.6171	0.3158	0.5085
0.8	0.5829	0.2940	0.4841
0.9	0.5517	0.2753	0.4613
1.0	0.5231	0.2590	0.4401

Fig 1 and Fig2 $\,$ compare the values plotted from Table 1 and Table 2

Fig 1: Comparison of Bandwidth of MALN, ALNand

Fig 2: Comparison of Probability of Acceptance of MALN, ALNand FT

Conclusion

It is clear from Fig 1 that the Bandwidth of the proposed MALN is higher than existing ALN and FT, as available paths for packet delivery are more in MALN. Fig 2 shows that the proposed Network has higher values of Probability of Acceptance.

References

- [1] Bansal P. K., Joshi R. C. and Singh Kuldeep, 1994, "On a Fault-Tolerant Multistage Interconnection Network", International Journal of Computers and Electrical Engineering, **20** (4), pp. 335-345.
- [2] Bhuyan L. N., Iyer Ravi R, Akhtar Tahsin, Nanda Ashwani K. and Kumar Mohan, January 1997, "Performance of Multistage Bus Networks for a Distributed Shared Memory Multiprocessor", IEEE Transactions on Parallel and Distributed Processing, 8 (1).
- [3] Chalasani S., Raghavendra C. S. and Varma A., 1994, "Fault-Tolerant Routing in MIN-Based Supercomputer", Journal of Parallel and Distributed Computing, **22**, pp.154-167.
- [4] Das C. R. and Bhuyan L. N., August 1985, "Reliability simulation of multiprocessor systems", Proceedings International Conference on Parallel Processing, pp. 764-771.
- [5] Gupta A. K. Dally W. J., January-June 2006, "Topology Optimization of Interconnection Networks", Computer Architecture Letters, 5(1),pp. 10-13.
- [6] Kamiura N., Kodera T. and Matsui N., October 2000, "Design of a Fault-Tolerant Multistage Interconnection Network with Parallel Duplicated Switches", Proceedings of IEEE International Symposium on Defect and Fault- Tolerance in VLSI Systems, pp. 143-151.