
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 12 121 – 125

121
IJFRCSCE | December 2018, Available @ http://www.ijfrcsce.org

Secure Multilevel Data Authentication System in Cloud Environment

M. Suuny Kousik Reddy,

Bachelor of Technology,

Electronics and Communication Engineering,

Yogi Vemana University

mskousikreddy1997@gmail.com

Dr. K. Venkata Ramanaiah

Professor

Electronics and Communication Engineering,

Yogi Vemana University,

ramanaiahkota@gmail.com

Abstract - Dynamic Proof of Storage is a useful cryptographic primitive that enables a user to check the integrity of outsourced files and to

efficiently update the files in a cloud server. Though researchers have planned several dynamic PoS schemes in single user environments, the

matter in multi-user environments has not been investigated sufficiently. A sensible multi-user cloud storage system wants the secure client-side

cross-user de-duplication technique, that permits a user to skip the uploading method and procure the possession of the files now, once

alternative house owners of an equivalent files have uploaded them to the cloud server. To the simplest of our data, none of the present dynamic

PoS will support this system. during this paper, we have a tendency to introduce the conception of de-duplicatable dynamic proof of storage

associated propose an economical construction referred to as DeyPoS, to realize dynamic PoS and secure cross-user duplication, at the same

time. Considering the challenges of structure diversity and personal tag generation, we have a tendency to exploit a unique tool referred to as

Homomorphic Authenticated Tree (HAT). We have a tendency to prove the protection of our construction, and therefore the theoretical analysis

and experimental results show that our construction is economical in follow.

Keywords: Deduplication, Proof of ownership, Dynamic proof of storage, Cloud Computing.

__*****___

I. Introduction

To the best of our knowledge, none of the existing dynamic

PoSs can support this technique. In this paper, we introduce

the concept of deduplicatable dynamic proof of storage and

propose an efficient construction called DeyPoS, to achieve

dynamic PoS and secure cross-user deduplication,

simultaneously. Considering the challenges of structure

diversity and private tag generation, we exploit a novel tool

called HAT. We prove the security of our construction, and

the theoretical analysis and experimental results show that

our construction is efficient in practice.

To better understand the following contents, we present

more details about PoS and dynamic PoS. In these schemes,

each block of a file is attached a tag which is used for

verifying the integrity of that block. When a verifier wants

to check the integrity of a file, it randomly selects some

block indexes of the file, and sends them to the cloud server.

According to these challenged

indexes, the cloud server returns the corresponding blocks

along with their tags.

The verifier checks the block integrity and index

correctness. The former can be directly guaranteed by

cryptographic tags. How to deal with the latter is the major

difference between PoS and dynamic PoS. In most of the

PoS schemes, the block index is “encoded” into its tag,

which means the verifier can check the block integrity and

index correctness simultaneously. However, dynamic PoS

cannot encode the block indexes into tags, since the

dynamic operations may change many indexes of non-

updated blocks, which incurs unnecessary computation and

communication cost. For example, there is a file consisting

of 1000 blocks, and a new block is inserted behind the

second block of the file. Then, 998 block indexes of the

original file are changed, which means the user has to

generate and send 999 tags for this update. Authenticated

structures are introduced in dynamic PoSs to solve this

challenge. As a result, the tags are attached to the

authenticated structure rather than the block indexes.

Taking the Merkle tree in Fig. 1a as an example Merkle tree

is one of the most efficient authenticated structures in

dynamic PoS, the tag corresponding to the second file block

involves the index of the Merkle tree node ν5 that is 5,

rather than 2. When a new block is inserted behind the

second file block, the authenticated structure turns into the

structure. Then, the index in the tag corresponding to the

second file block changes, and the user only has to generate

2 tags for this update.

Users ought to be convinced that the files keep within the

server don't seem to be tampered. Ancient techniques for

safeguarding knowledge integrity, like MACs and digital

signatures need users to transfer all of the files from the

cloud server for verification that incurs a significant

communication value. These techniques don't seem to be

appropriate for cloud storage services wherever users could

check the integrity oftentimes, like each hour. Thus,

researchers introduced Proof of Storage (PoS) for checking

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 12 121 – 125

122
IJFRCSCE | December 2018, Available @ http://www.ijfrcsce.org

the integrity while not downloading files from the cloud

server. What is more, users may need many dynamic

operations, like modification, insertion, and deletion, to

update their files, whereas maintaining the potential of PoS.

Dynamic PoS is projected for such dynamic operations. In

distinction with PoS, dynamic PoS employ structures, like

the Merkle tree. Thus, once dynamic operations are dead,

users regenerate tags (which are used for integrity checking,

like MACs and signatures) for the updated blocks solely,

rather than create for all blocks. To rised perceive the

subsequent contents. We tend to gift additional details

concerning PoS and dynamic PoS. In these schemes, every

block of a file is hooked up a (cryptographic) tag that is

employed for substantiating the integrity of that block. Once

a champion desires to ascertain the integrity of a file, it

every which way selects some block indexes of the file, and

sends them to the cloud server. Consistent with these

challenged indexes, the cloud server returns the

corresponding blocks beside their tags. The champion

checks the block integrity and index correctness.

The previous are often directly bonded by cryptanalytic tags.

a way to affect the latter is that the major distinction

between PoS and dynamic PoS In most of the PoS schemes,

the block index is “encoded” into its tag, which implies the

champion will check the block integrity and index

correctness at the same time. However, dynamic PoS cannot

cypher the block indexes into tags, since the dynamic

operations could modification several indexes of non-

updated blocks that incurs reserve computation and

communication value.

II. Related work

Proof of Storage

The idea behind PoS is to choose few data blocks at random,

as the challenge. Then, the cloud server returns the

challenged data blocks and their tags as the response. Since

the data blocks and the tags can be combined via

homomorphic functions, the communication costs are

reduced.

This PoS concept was basically introduced by Ateniese et al

and Kaliski. Ateniese [1] introduced introduce a model for

provable data possession (PDP) that allows a client that has

stored data at an untrusted server to verify that the server

possesses the original data without retrieving it. The model

generates probabilistic proofs of possession by sampling

random sets of blocks from the server, which drastically

reduces I/O costs. The client maintains a constant amount of

metadata to verify the proof. The challenge/response

protocol transmits a small, constant amount of data, which

minimizes network communication.

Kaliski [2] introduced a POR (proofs of retrievability)

scheme enables an archive or back-up service (prover) to

produce a concise proof that a user (verifier) can retrieve a

target file F, that is, that the archive retains and reliably

transmits file data sufficient for the user to recover F in its

entirety. A POR may be viewed as a kind of cryptographic

proof of knowledge (POK), but one specially designed to

handle a large file (or bit string) F. Explored POR protocols

here in which the communication costs, number of memory

accesses for the prover, and storage requirements of the user

(verifier) are small parameters essentially independent of the

length of F. To conduct and verify POR, users need to be

equipped with devices that have network access, and that

can tolerate the (non-negligible) computational overhead

incurred by the verification process. This clearly hinders the

large-scale adoption of POR by cloud users, since many

users increasingly rely on portable devices that have limited

computational capacity, or might not always have network

access.

Dynamic Proof of Storage

Proofs of retrievability allow a client to store her data on a

remote server (e.g., “in the cloud”) and periodically execute

an efficient audit protocol to check that all of the data is

being maintained correctly and can be recovered from the

server. For efficiency, the computation and communication

of the server and client during an audit protocol should be

significantly smaller than reading/transmitting the data in its

entirety. Although the server is only asked to access a few

locations of its storage during an audit, it must maintain full

knowledge of all client data to be able to pass.

Starting with the work of Juels and Kaliski all prior

solutions to this problem crucially assume that the client

data is static and do not allow it to be efficiently updated.

Indeed, they all store a redundant encoding of the data on

the server, so that the server must delete a large fraction of

its storage to „lose‟ any actual content. Unfortunately, this

means that even a single bit modification to the original data

will need to modify a large fraction of the server storage,

which makes updates highly inefficient. Overcoming this

limitation was left as the main open problem by all prior

works.

The work [6], gives the first solution providing proofs of

retrievability for dynamic storage, where the client can

perform arbitrary reads/writes on any location within her

data by running an efficient protocol with the server. At any

point in time, the client can execute an efficient audit

protocol to ensure that the server maintains the latest version

of the client data. The computation and communication

complexity of the server and client in our protocols is only

polylogarithmic in the size of the client‟s data. The starting

point of our solution is to split up the data into small blocks

and redundantly encode each block of data individually, so

that an update inside any data block only affects a few code

word symbols. The main difficulty is to prevent the server

from identifying and deleting too many code word symbols

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 12 121 – 125

123
IJFRCSCE | December 2018, Available @ http://www.ijfrcsce.org

belonging to any single data block. We do so by hiding

where the various code word symbols for any individual

data block are stored on the server and when they are being

accessed by the client, using the algorithmic techniques of

oblivious RAM.

Deduplicatable Dynamic Proof of Storage

Halevi et al. [9] introduced the concept of proof of

ownership which is a solution of cross-user deduplication on

the client-side. It requires that the user can generate the

Merkle tree without the help from the cloud server, which is

a big challenge in dynamic PoS. Xu et al. [10] proposed a

client-side deduplication scheme for encrypted data, but the

scheme employs a deterministic proof algorithm which

indicates that every file has a deterministic short proof.

Thus, anyone who obtains this proof can pass the

verification without possessing the file locally. Other

deduplication schemes for encrypted data were proposed for

enhancing the security and efficiency. Once the files are

updated, the cloud server has to regenerate the complete

authenticated structures for these files, which causes heavy

computation cost on the server-side.

Problem Statement

Present dynamic PoSs, a tag used for integrity verification is

generated by the secret key of the uploader. Thus, other

owners who have the ownership of the file but have not

uploaded it due to the cross-user deduplication on the client-

side, cannot generate a new tag when they update the file. In

this situation, the dynamic PoSs would fail.

System Architecture

Here describing our system construction module, to evaluate

and implement a deduplicatable dynamic proof of storage

and propose an efficient construction called DeyPoS. For

this purpose we develop User and Cloud entities. In User

entity, a user can upload a new File, Update uploaded File

blocks and a user can deduplicate other users File by using

deduplicatable dynamic proof of storage.

Our system model considers two types of entities: the cloud

server and users. For each file, original user is the user who

uploaded the file to the cloud server, while subsequent user

is the user who proved the ownership of the file but did not

actually upload the file to the cloud server.

Implementation Techniques Procedure

Block Generation

In this module, we develop the Block Generation process. In

the update phase, users may modify, insert, or delete some

blocks of the files. Then, they update the corresponding

parts of the encoded files and the authenticated structures in

the cloud server, even the original files were not uploaded

by themselves. Note that, users can update the files only if

they have the ownerships of the files, which means that the

users should upload the files in the upload phase or pass the

verification in the Deduplication phase. Though we can

create n-blocks in this module, we split the files into 3

Blocks. The Blocks for files are divided equally accordingly

and then the blocks are uploaded in the Cloud Server too.

Deduplicatable Dynamic POS

In this module we focus on a Deduplicatable Dynamic PoS

scheme in multiuser environments. Deduplicatable Dynamic

Proof of Storage is used to deduplicate the other users file

with proper authentication but without uploading the same

file. Deduplicatable Dynamic Proof of Storage

(deduplicatable dynamic PoS), which solves the structure

diversity and private tag generation challenges.

The main process of this module is Original user is the user

who uploaded the file to the cloud server, while subsequent

user is the user who proved the ownership of the file but did

not actually upload the file to the cloud server. There are

five phases in a deduplicatable dynamic PoS system: pre-

process, upload, deduplication, update, and proof of storage.

In the pre-process phase, users intend to upload their local

files. The cloud server decides whether these files should be

uploaded. If the upload process is granted, go into the

upload phase; otherwise, go into the deduplication phase.

In the upload phase, the files to be uploaded do not exist in

the cloud server. The original users encode the local files

and upload them to the cloud server. In the deduplication

phase, the files to be uploaded already exist in the cloud

server. The subsequent users possess the files locally and the

cloud server stores the authenticated structures of the files.

Subsequent users need to convince the cloud server that they

own the files without uploading them to the cloud server.

In the update phase, users may modify, insert, or delete

some blocks of the files. Then, they update the

corresponding parts of the encoded files and the

authenticated structures in the cloud server, even the original

files were not uploaded by themselves. Note that, users can

update the files only if they have the ownerships of the files,

which means that the users should upload the files in the

upload phase or pass the verification in the deduplication

phase. For each update, the cloud server has to reserve the

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 12 121 – 125

124
IJFRCSCE | December 2018, Available @ http://www.ijfrcsce.org

original file and the authenticated structure if there exist

other owners, and record the updated part of the file and the

authenticated structure. This enables users to update a file

concurrently in our model, since each update is only

“attached” to the original file and authenticated structure.

In the proof of storage phase, users only possess a small

constant size metadata locally and they want to check

whether the files are faithfully stored in the cloud server

without downloading them. The files may not be uploaded

by these users, but they pass the deduplication phase and

prove that they have the ownerships of the files.

Proposed Functions

We propose a concrete scheme of deduplicatable dynamic

PoS called DeyPoS. It consists of five algorithms.

• Init

• Encode

• Deduplicate

• Update

• Check.

Functional Procedure

Init()

Cloud Server and user register the Unique ID for

initialization. Original registered user can upload the files to

the server. Subsequent user register the Unique ID and its

registered Password for access the uploaded files.

Encode()

Original users before upload the Files to the Cloud server a

encoding process done. In the Encode process the

HomographicAuthenticate Tree logic be applied.

Deduplicate()

Detect the duplicate of the ID by verify the database by the

Unique Deypos ID and the generated

unique password. If ID and password validated success the

subsequent users can access the file

rights otherwise ID consider as Duplication.

Update()

Original users upload the file to the cloud server and then

updated. File upload with unique ID for access the files by

the subsequent users.

Check()

Check the Validation and verification process for the Files

upload and download. Cloud server

Performance and No. of deduplication trials happen when

try to access the server files.

Homomorphic Authentication Tree

To implement an efficient deduplicatable dynamic PoS

scheme, we design a novel authenticated structure called

HAT. A HAT is a binary tree in which each leaf node

corresponds to a data block. Though HAT does not have any

limitation on the number of data blocks, for the sake of

description simplicity, we assume that the number of data

blocks n is equal to the number of leaf nodes in a full binary

tree.

Thus, for a file F = (m1, m2, m3, m4) where ml represents the

ι-th block of the file. Each node in HAT consists of a four-

tuple Vi = (I, li, vi, ti). i is the unique index of the node. The

index of the root node is 1, and the indexes increases from

top to bottom and from left to right. Denotes the number of

leaf nodes that can be reached from the i-th node. is the

version number of the i th node. Represents the tag of the i-

th node. When a HAT is initialized, the version number of

each leaf is 1, and the version number of each non-leaf node

is the sum of that of its two children. For the i-th node,

denotes the combination of the blocks corresponding to its

leaves. The tag is computed from F(mi), where F denotes a

tag generation function. We require that for any node vi and

its children v2i and v2i +1, F(mi) = F(m2i ⊙ m2i +1) =

F(m2i) ⊗ F(m2i +1) holds, where ⊙ denotes the

combination of m2i and m2i +1, and ⊗ indicates the

combination of F(m2i) and F(m2i +1), which is why we call

it a “homomorphic” tree.

Performance Analysis

We first evaluate the cost in the upload phase. Bellow figure

represents the initialization time for constructing Merkle

trees and HATs with different sizes of files and blocks. The

initialization time is similar in all schemes. For example, the

initialization time for constructing Merkle tree and HAT is

6.7s and 7.9s, respectively, for a 1GB file of 4kB block size.

Fig: Initialization time in different file sizes

Fig: Authenticator size in different file sizes

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 4 Issue: 12 121 – 125

125
IJFRCSCE | December 2018, Available @ http://www.ijfrcsce.org

The storage cost of the client is O(1), and the storage cost of

the server is shown in above figure. The authenticator size

of HAT is larger than that of the Merkle tree. However,

when Merkle tree is employed in PoS scheme, it requires

more space for storing tags of file blocks. As a result, the

storage cost of our scheme is similar to other Merkle tree

based PoS schemes. When the block size is 4kB, the

authenticator size is less than 3% of the file size in our

scheme.

III. Conclusion

We proposed the comprehensive requirements in multi-user

cloud storage systems and introduced the model of

deduplicatable dynamic Pos. We designed a novel tool

called HAT which is an efficient authenticated structure.

Based on HAT, we proposed the first practical

deduplicatable dynamic PoS scheme called DeyPoS and

proved its security in the random oracle model. The

theoretical and experimental results show that our DeyPos

implementation is efficient, especially when the file size and

the number of the challenged blocks are large. The first

realistic deduplicatable dynamic PoS scheme which makes

use of complete necessities in multi-consumer cloud storage

systems and proved its security within the random oracle

model. The theoretical and experimental results show that

the procedure is efficient, peculiarly when the file dimension

and the number of the challenged blocks are large.

References

[1] Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, “Provable data possession at

untrusted stores,” in Proc. of CCS, pp. 598–609, 2007.

[2] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of

retrievability for large files,” in Proc. of CCS, pp. 584 –

597,2007.

[3] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A.

Reuter, “Outsourced proofs of retrievability,” in Proc. of

CCS, pp. 831–843, 2014.

[4] H. Shacham and B. Waters, “Compact proofs of

retrievability,” in Proc. of ASIACRYPT, pp. 90–107, 2008.

[5] Y. Dodis, S. Vadhan, and D. Wichs, “Proofs of retrievability

via hardness amplification,” in Proc. of TCC, pp. 109–127,

2009.

[6] Z. Mo, Y. Zhou, and S. Chen, “A dynamic proof of

retrievability (PoR) scheme with o(logn) complexity,” in

Proc. of ICC, pp. 912–916, 2012.

[7] E. Shi, E. Stefanov, and C. Papamanthou, “Practical dynamic

proofs of retrievability,” in Proc. of CCS, pp. 325–336,

2013.

[8] D. Cash, A. K¨upc¸ ¨u, and D. Wichs, “Dynamic proofs of

retrievability via oblivious RAM,” in Proc. Of

EUROCRYPT, pp. 279–295, 2013.

[9] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg,

“Proofs of ownership in remote storage systems,” in Proc. of

CCS, pp. 491–500, 2011.

[10] J. Xu, E.-C. Chang, and J. Zhou, “Weak leakage-resilient

client side deduplication of encrypted data in cloud storage,”

in Proc. Of ASIACCS, pp. 195–206, 2013.

[11] Q. Zheng and S. Xu, “Secure and efficient proof of storage

with deduplication,” in Proc. of CODASPY, pp. 1– 12, 2012.

[12] R. Du, L. Deng, J. Chen, K. He, and M. Zheng, “Proofs of

ownership and retrievability in cloud storage,” in Proc. of

TrustCom, pp. 328–335, 2014.

[13] B. Wang, B. Li, and H. Li, “Public auditing for shared data

with efficient user revocation in the cloud,” in Proc. of

INFOCOM, pp. 2904–2912, 2013.

[14] B. Wang, B. Li, and H. Li, “Oruta: privacy-preserving public

auditing for shared data in the cloud,” IEEE Transactions on

Cloud Computing, vol. 2, no. 1, pp. 43–56, 2014.

[15] J. Yuan and S. Yu, “Efficient public integrity checking for

cloud data sharing with multi-user modification,” in Proc. of

INFOCOM, pp. 2121–2129, 2014.

