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I. INTRODUCTION 

1.1 Singular Homology  

Let us return to topololgy to construct the (singular) homology functions Hn :  Top  Ab, one function for each n  0; we provide 

more details for a generalization of our earlier discussion of curves in planar regions.  

For each n  0, consider euclidean n-space R
n
 imbedded R

1
 as all vectors whose last coordinate is 0. Let v0 denote the origin, and 

let {v1, v2, ...., vn} be the standard orthanormal basic of Rn (vi has 1 in the ith  coordinate and 0 elsewhere). For each n  0, let n = 

{(t1, ........tn) ti  0 all i, and ti = 1} be the convex set spanned by {v0, ...... vn}; n is called the standard n-simplex with vertices 

{v0, ...., vn} and is also denoted n = [v0, ...., vn]. Thus, 0 = [v0] is a point, 1 = [v0, v1] is the uniinterval [0, 1]; 2 = [v0, v1, v2] is 

the triangle (with interior) having vertices v1, v2,; 3 is a tetrahedron, and so forth. A curve in a topological space X is a continuous 

map  : t  X; a closed curve in X is a curve  with (N) =  (1). The boundary of t is {0, 1]; more generally, the boundary of 

n is 0
n
i  [v0, ...., 


iv ,....... vn], where means "delete". However, we need an "oriented boundary" if we are to generalize the picture of 

Green'stheorem [1-3].  

 

1.2 Definition : An orientation of n is an ordering of its vertices [4].  

It is clear that different orderings may give the "same" orientation. For example, consider 2 with its vertices ordered v0 <v1 < v2. 

A tour of the vertices shows that 2 is oriented counterclokwise. Thus, the orderings 

 
      Figure (x) 

v1 < v2 < v0 and v2 < v0 < v1 give the same tour, while the other three permutations give a clockwise tour. 

 

1.3 Definition. Two orientation of n are the same if, as permutations of {v0,...., vn], they have the same parity (both are even 

or both are odd); otherwise, the orientation are opposite [5]. 

After examining this definition for the tetrahedron 3, the reader will be content with it. 

Given an orientation of n, one may orient [v0....... 


iv , ...... 
nv ] in the sense (–1)

i
 [v0....... 


iv , ...... 

nv ], where –[v0....... 


iv , ...... 

nv ] means its orientation is opposite to that of [v0....... 


iv , ...... 
nv ] (vertices in displayed order). For example, consider 2 

oriented counter clockwise:  
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Figure (xi) 

the natural way to orient the edges is : 

 
    Figure (xii) 

The edges are thus oriented [v0, v1], [v1, v2], and [v2, v0]. Since [v2, v0]  = – [v0, v2], the oriented boundary of 2 is [v1, v2]  – [v0, 

v2]  [v0, v1] =  [v0, v1, v2]  [v0, 


1v , v2]  [v0 v1, 


2v ]. The oriented boundary of n should thus be 
n
i  = 0 (–1)

i
 [vo, v1, ....... 


iv , 

..... vn]. 

 

1.4 Definition : If X is a topological space an n-simplex in X is a continues function  : n – X. The n-chains in X comprises 

X, the free abelian group with basis all n-simplexes in X. For convenience set S–1(X) = 0. 

Observe that S1(X) is precisely the group of chains suggested by line integrals: all formal linear combination of curve in X. The 

group Sn(X) is  the n-dimensional generalization of S1(X) we anticipated. 

If  : n  X, its boundary should be  should be 
0

n

i (– 1)
i

 0
1

v ….. 
^

iv  ….. vn]. A technical problem arises. It would be 

nice if or were an (n– 1) chain : It is not because the domain of  [v0 ……. 
^

iv  ….. vn] is not the standa (n – 1) simplex n–1. To 

state the problem is to solve it. For each i, define ei : n–1  n as the affine map sending the lemses {v0 ….., vn-1} to t vertices        

{ v0, ….. iv  ….. vn}that preserves the displayed orderings : 

 ei (t1 ….. tn–1) = t1….., ti –1, 0, ti – tn–1)  n. 

 

1.5 Definition. If  : n  X, then n = 
0

n

i  (–1)
i
 ei  Sn–1(X). 

 

 

II. THEOREMS 

2.1  Theorem : There is a unique homomorphism dn: Sn(X)  Sn–1 (X) with n = 
0

n

i (–1)
i
 ei for every n-simplex  in 

X. 

Proof :   

The homomorphism n are called boundary operators; usually one omitted the subscript n. 

We now have a sequence of homomorphism. 

 …  Sn(X) ni  Sn–1 (X)  ….  S1(X) 1i  S0(X)  0. 

Let us denote e1: n–1  n by [v0, …… iv  ….. vn]. 
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Lemma :   The following formulas hold ………. ej: n–2  n : if i < j then ei o ej = [v0 ……, iv ,……., jv , …… vn] : if i  j, 

then ei o ej = [v0, …. jv , ….., 1jv 
 , …… vn] 

Proof.    The maps ei and ej, hence their composite, are completely determined by their values on the vertices {v0, …. vi–2}. The 

computation showing that the two displayed vertices are the deleted ones is routine. 

 

2.2 Theorem : For each n  1, we have n–1 n = 0 

Proof.   It suffices to show  = 0 for every n-simplex  : n  X 

   =  ((–1)
i
 e1) =  (–1)

i
 (ei) = ( 1) 




i j

l j
eiej 

=  ( 1)i j

i j




   [v0, …… iv , ……, jv …… vn] 

+ ( 1)i j

i j




   [v0, …… iv , ……, 1iv 

 , …… vn] 

 

Lemma : Now change variable in the second sum; set l = i and k = i +1. The second sum reads 
1 1( 1)  




k

i k
  [v0, ……. 1v

,……. kv , ….., vn]. It is now clear that each term in that sight sum occurs in the left sum with opposite sign. Therefore all cancels 

and  = 0. 

 

2.3 Definition :  An n-cycle is an elements of kern; write kern = Zn(X). An n-boundary is an element of imn+1: write 

imn+1 = Bn(X). 

Both Zn(X) and Bn(X) are subgroups of Sn(X). Our discussion of the oriented boundary of n should make the definition of n 

appear reasonable. It is also reasonable n-cycles are generalizations of closed curves; at the very least, this is so when n = 1. 

Assume : 1  X is a closed curve, so that (0) = (1). Now a 0-simplex in X can be identified with a point of X, so that S0(X) 

is the group of all formal linear combinations of the points of X. Furthermore, 1 = (1) – (0) so a closed curve is a 1-cycle. As 

a second example, assume ,  and  are curves forming a triangular path in X : say, p(0) = x0, p(1) = x1 = (0), (1) = x2 = (0), 

and (1) = x0. Then 1 ( +  + ) = (x1 –x0) + (x2 – x1) + (x0 – x2) = 0, and  +  +  is a 1-cycle [6&7]. 

 

Corollary :  For each n  0, we have Bn(X)  Zn(X)  Sn(X) 

Proof : If   Bn(X), then  = y for some y  Sn+1 (X). Thus  =  = 0, by Theorem 2.2, whence   kern = Zn(X). 

Once we recall that Green’s theorem tells us boundaries should be trivial, the next definition is forced on us. 

 

2.4 Definition :   The nth homology group of X is  

   Hn(X) = Zn(X) / Bn(X). 

The next few pages should be read without pausing to verify any particular assertion; more details will be provided when we study 

homology in a purely algebraic setting. At present, we merely wish to complete the topological tale [8].  

For each fixed n  0, we claim H, : Top  Ab is a functor. It remains to define, for every continuous f : X  Y and every n  0, 

homomorphisms Hn(f) : Hn(X)  Hn(Y). This is done as follows. As a preliminary step, define “chain” homomorphisms f#: Sn(X) 

 Sn(Y) by    f o  (where  is an n-simplex in X) and extend by linearity. A simple calculation shows the following 

diagram commutes :  

 

 

 

 

 

 

Figure (xiii) 

i.e., f#  = f#  (we have abused notation!). It follows easily that f# (Zn(X))  Zn(Y) and f# (Bn(X))  Bn(Y), so that f# induces a well 

defined homomorphism between the quotients Hn(X)  Hn(Y) by 
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  Hn(f): 
nZ + Bn(X)  f# (

nZ ) + Bn(Y), 

where 
nZ  Zn (X). Each Hn is, indeed, a functor. 

Topological (and analytical) necessities require two modifications of this construction. If G is a fixed abelian group, replace the 

sequence  

   ….  Sn(X) n
 Sn–1 (X)  ……. 

by the sequence  

  …. Sn(X) z G 1n G   Sn–1 (X) z G  ……… 

By previous theorem we know that the composite of adjacent maps is 0 so that we may, as above, define cycles, boundaries, and 

homology. The groups so obtained are denoted Hn(X ; G) and are called homology groups with coefficients G. In particular, since 

we know shows that our original construction yields the group Hn(X ; Z). 

The second modification constructs contravariant functors, called cohomology. If G is a fixed abelian group, replace the sequence 

   …  Sn(X) n
  Sn–1 (X)  ….. 

by the sequence of "cochains" 

  .....  Homz (Sn(X), G) n
Homz (Sn–1(X), G) ...... 

The arrows have changed direction because Homz (, G) is contravariant. Again, additive functors preserve zero morphisms, so the 

composite of adjacent maps is still 0. Certain subgroups of Homz (Sn(X), G) are defined, "cocycles" and "coboundaries", and their 

quotient H
h
 (X; G) is called the nth cohomology group of X with coefficients G. For each n  0, H

n
(; G: Top  Ab is a 

contravariant functor. If one lets G = R, the additive group of reals, this is the correct context in which to simultaneously view the 

Fundamental Theorem of Calculus, Green's theorem. Stokes' theorem, and higher dimension analogues (de Rham theorem) [9-11]. 

We end this by exhibiting an algebraic context in which one constructs a long sequence of modules and maps in which the 

composite of adjacent maps is 0. Every module M can be described by generators and relations i.e., there is a map  F0  M of a 

"free" module F0 onto M with kernel K0, say. Now K0, in turn may also be so described : there is a map F1  K0 of a free module 

F1 onto K0 with kernel K1, say. Link these together to get 

  K1  F1  F0  M 

 

 

 

     K0 

where F1  F0 is defined as the composite F1  K0  F0. This procedure may be iterated indefinitely to give a sequence  

  .....  Fn  Fn–:  .....  F0  M  0, 

where each Fn is free and composites of adjacent maps are 0. Both of the topologists modifications are available: for fixed module 

B, one may apply the function  B to obtain a new sequence and construct homology functions: one may apply Hom (B), to 

obtain a new sequence and construct contravariant cohomology functions. 

 

III. Hom and  

Homological algebra studies a ring R by investigating its category of modules RM; this category, in turn, is investigated by 

examining the behavior of certain functions on it, the most important of which are Hom, , and related functions derived from 

these [12 & 13]. 

There are at least two reasons why this approach should be successful. The fancier reason is a theorem of Morita: two 

commutative rings R and S are isomorphic if and only if the categories RM and SM are "equivalent"; actually, Morita's theorem 

gives a necessary and sufficient condition on any pair of (not necessarily commulative) rings R and S that their module categories 

be equivalent. This theorem thus shows that the category RM conveys much information about R. Of course, there is a much more 

elementary way to see this. Recall that a left R-module M is an abelian group with a scalar multiplication : R  M  M. The 

module axioms assert that  is Z-biadditive. Thus, for every fixed r  R, the function r: M  M defined by m  (r, m) = rm 

is a Z-homomorphism. Now Endz(M) = Homz (M, M) is a ring if we define multiplication as composition, and it is easy to see that 

 : R  Endz(M) defined by r r is a ring map. Thus, every R-module M defines a representatives of R in the endomorphism 

rings of an abelian group. Converesly, every such representation :R  Endz(M) makes the abelian group M into a left R-module 

by defining :R  M  M by (r,m) r(m). Module theory is thus representation theory of rings. 
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Let us now look at module categories. Our initial observations essentially say that usual first properties of abelian groups and of 

vector spaces are also properties of more general modules.  

Let R be a fixed ring (always associative with 1); we shall say "module" instead of "left R-module". Of course, all goes equally 

well for right modules, since we know that shows that every right R-module is a left R
op

-module. 

 

3.1 Definition : If M is a module, then a sub-module M' of M is a subgroup that is closed under scalar multiplication : 

  m'  M' implies  rm'  M', all   r  R. 

 

Examples 1.   0 and M are sub-modules of M; any sub-module M'  M is called proper. 

Examples 2.   If M = R, its sub-modules are precisely the left ideals. 

Examples 3.   If I is a left ideal of R, then 

 IM = {ajmj : aj I, mj  M} is a sub-module of M. 

Examples 4.   If I is a two-sided ideal of R (so that R/I is a ring) and if M is a module with IM = 0, then M is an R/I-module (if r  = r 

+1, define r m, = rm). 

Examples 5.   Let f : M  N be an R-map. Then 

  ker f = {m  M: fm = 0} is a sub-module of M, and 

 if f = f (M) = {n  N:n = f(m) for some m  M} 

is a sub-module of N. Of course, we have abbreviated the words kernel and image. 

Examples 6. If M1 and M2 are sub-modules of M, then so is  

  M1 + M2 = {m1 + m2:m1  M1, m2,  M2}. 

Examples 7. If {M'j:j  J} is a family sub-modules of M, then jJ M'j is also a sub-module of M. 

 

3.2 Definition : Let X be a subset of a module M. The sub-module of M generated by X is jJ M'j, where {M'j: j  J} is the 

family of all sub-modules of M that contain X. We denote this sub-module by X . 

 

3.3 Theorem : Let X be a subset of M. If X = , then X  = 0; if X  , then X  = {rixi : ri  R, xi  X} 

Proof. : If X = , then 0 is a sub-module of M containing X, from which it follows that   = 0. If X  , then the subset S = 

{rixi : ri  R, xi  X} is defined (it is defined when X =  if one enjoys summing over an empty index set). Since R contains 1, 

we have X  S. An easy check shows S is a sub-module of M, so it follows at once that X   S. For the reverse inclusion, it 

suffices to show that if M' is any submodule of M containing X, then S  M' (for then S is contained in the intersection of all such 

M', which is X ). This is clear: xi M', all i, implies rixi  M' for all ri  R. 

 

3.4 Definition:  A module M is finitely generated (f.g.) if there is a finite subset {x1, ...., xn} of M with <x1, ......, xn> = 

M; a module M is cyclic if there is a single element x  M with X  = M. 

 

3.5 Definition: Let f : M  N be an R-map. We say f is monic (or is a monomorphism) if f is one-one; we say f is epic (or is an 

epimorphism) if f is onto. 

 Of course, f is an isomorphism if and only if f is both monic and epic. 

 

3.6 Definition: If M' is a sub-module of M, the quotient module M/M' is the quotient group M/M' made into an R-module 

by 

  r(m + M') = rm + M' 

 One must assume M' is a sub-module in order that the action of R on M/M' be well defined.  

 

Examples 8.  If M' is a sub-module of M, the inclusion i:M'  M is monic. 

Examples 9.  If M' is a sub-module of M, the natural map  :M  M/M' defined by m m + M' is epic, and ker  = M'. 

Examples 10. If f : M  N, then f is monic if and only if ker f = 0. 

Examples 11. If f : M  N, then f is epic if and only if coker f = 0 (cokernel f is defined as the quotient module N/im f). 
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Examples 12. (First isomorphism Theorem) If f : M  N, then the map m + ker f  f(m) is an isomorphism M/ker f   m f. 

Examples 13. (Second Isomorphism Theorem) If M1 and M2 are sub-modules of M, then m1 + M1  M2 m1 + M2 is an 

isomorphism 

  M1/M1  M2  (M1 + M2)/M2.  

The second Isomorphism Theorem follows easily from the first : let :M  M/M1 be the natural map, and let f = /M1. It is easy 

to see that ker     f  = M1  M2 and im f = (M1 + M2)/M2. 

Examples 14. (Third Isomorphism Theorem) If M2  M1 are sub-modules of M, then (M/M2) / (M1/M2)   M/M1 Third 

Isomorphism Theorem also follows easily from the First: the map f : M/M2  M/M1 given by m + M2 m + M1 is epic with 

kernel M1/M2.  

Examples 15.  (Correspondence Theorem) If M' is a sub-module of M, there is a one-one correspondence between the sub-

modules S of M/M' and the "intermediate" sub-modules of M containing M' given by S 
–1

 (S) (where :M  M/M' is the 

natural map). 

 

3.7 Theorem : A module M is cyclic if and only if M   R/I for some left ideal I. Moreoever, if M = x . then I = {r  

R:rx =  0} 

Proof.  First of all, R/I is cyclic with generator 1 + I; if f : R/I  M is an isomorphism, then M = x , where x = f(1+I). 

Conversely, assume M = x . Define f : R  M by f(r) = rx. Since f is epic, M  R/ker f. But ker f  is a submodule of R, which 

is a left idea; indeed, ker f = {r  R : rx = 0}. 

 

3.8 Definition :   Two maps 

M' f  M g  M". 

are exact at M if im f = ker g. A sequence of maps (perhaps infinitely long) 

   ......  Mn+1 
1fn

  Mn 
fn
  Mn–1  ...... 

is exact if each adjacent pair of maps is exact. 

 

Examples 16. If 0  M' fM is exact, then f is monic (there is no need to label the only possible map 0  'M'); if M 
0  M"  0 

is exact, then g is epic; if 0  M 
f
  M'  0 is exact, then f is an isomorphism. 

  

Examples 17. If M' 
f
  M' g M" is exact with f epic and g monic, then M = 0. Conclude that exactness of 0  M  0 gives M = 

0. 

Examples 18. Prove that a map  is monic iff f = g  implies f = g (the diagram is )
f

g
A B C  ; prove that  is epic if and only 

if h = k implies h = k. 

Examples 19. If M1 f  M2  M3 
g  M4 is exact, then f is epic if and only if g is monic. 

Examples 20. If M1 f  M2  M3  M4 
0  M5 is exact, then f epic and g monic imply M3 = 0  

Examples 21. If 0  M' i M  M"  0 is exact, then M'   iM and M/iMM". Such sequences are called short exact 

sequences. 

Examples 22. Consider the cummulative diagram with exact rows. 
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Figure (xix) 

Prove that there exists a unique map A  A' making the diagram commute. Similarly, one can uniquely complete the commulative diagram 

with exact rows. 

 

Figure (xx) 

Remarks : There is a categorical translation of Example 2.7.Let U denote the category whose objects are all R-maps; define a 

morphism  : f  g as a pair of maps  = (1, 2)  making the following diagram commute:  

 
Figure (xxi) 

One may now see that ker and coker are functors U  RM.  

Example 23.  If f : M  N is a map, there is an exact sequence  

   0  ker f  M f  N  coker f  0. 

Examples 23. (Restatement of Third Isomorphism Theorem) If M2  M1 are sub-modules of M, there is a short exact sequence 0 

 M1/M2  M/M2 M/M1  0. 

Examples 24. (Another Version of Third Isomorphism Theorem) Consider the commulative diagram. 

 

Figure (xxii) 

where x is monic and  is epic. Then ker :  0 if and only if coker   0, i.e., K' is a proper submodule of K. (Hint: Write C = 

M/K and C' = M/K', so that ker  = K'/K) 

 

IV. CONCLUSION 

It is concluded that there are many definitions and theorems on homology theory which has been proved giving suitable examples. 

These examples verify the contribution of homology theory.  
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