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Abstract—We solve the Euler-Poisson-Darboux (EPD) equation using the Fourier transform method. The inverse Fourier transform is found
using a convolution with the Heaviside step function in order to obtain the solution. We then extend our results into a generalized
hypergeometric form and we also discuss the differentiability of the solution.

Keywords-Euler-Poisson-Darboux (EPD) equation, Fourier transform, Heaviside step function, hypergeometric function.

*hkkkk

The Euler-Poisson-Darboux (EPD) equation is a second order

differential equation which after some transformation may be

denoted by

o°u kou &
i=1

a2t &l

A
+— uJ =L(u)=0
X;
(1.1)
u(x,0)=f(x); u,(x,0)=0, i=12,..

(1.2)
where K and A are real or complex parameters and t is the
time variable. The equation (1.1) called singular if the
operator

.k
coefﬁuentT —s>oast—0.

o%u
It is called degenerate if t? —0 as t 0.

If k=0, and A =0 (1.1) reduces to the wave equation.
The EPD equation has been studied since the ancient time of

Euler (1770). Poisson (1823) solved the equation forn =1.
An expository of the theory of Euler and Poisson was given by
Darboux(1915).

Solutions for (1.1) and (1.2) have also been found for various
values of k as follows;

For kK =n-1, the solution as given by Asgeirsson (1937),
For K > n—1; the solution was given by Weinstein ( 1952)
for k<n-1 but k#-1.—3,-5,....

by Weinstein ( 1954),

for k =-1,-3,-5, the solution was found by

Blum (1954). '

Most recently Manyonge et al (2013), Seilkhanova,(2015),
lyaya and Chepkwony (2016), lyaya et.al (2018) among
others.
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The EPD appears in many fields of mathematics and physics
including propagation of sound waves (Copson, 1975), theory
of surfaces (Darboux, 1972), colliding gravitational fields
(Hauser and Ernest, 1989), gas dynamics, etc.

We now define some important terms which are anticipated in
our further discussions;
Definition 1: Hypergeometric series

The hypergeometric series , F (a, b;c; Z) which is a solution

of the hypergeometric differential equation is defined as

ab a(a+1l)b(b+1) z?
F(abcz)=1+—z+ (a+1)b(b+1) 22
c c(c+1) 2!

=Z(a)n (b), iT

= (c)

o0

|
i
%

(1.3)
where
2- refers to the number of parameters in the numerator
1-refers to the number of parameters in the denominator

A~ @)
(c),n!
|z|] <1, c#0,-1,-2,...
The Pochhammer symbols are defined by
(a), =1 (a), =a, (a), =a(a+1),,..etc

Generally,

a) =ala+ a+ at+n-— :Man
(2), =a(a+1)(a+2).(an-2) == e
(1), =n!
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Definition 2: Bessel function
The Bessel function of order v is defined by

z)v

" 2

(2 F [v +1;—Z—j (L4)
4

JV(Z)ZMO 1

Definition 3 : Integral representation of the
hypergeometric function
The integral representation of the hypergeometric function due
to Pochhammaer is

Hence

@0 @, (5 o
e (7

(1.8)
Definition 5: Differentiation of the hypergeometric

1
F(a,b;C;Z)=Lc;)Itb"l(l—t)cbl(l—zt) dt function

I'(b)I'(c—b)sy s

The integral representation of the hypergeometric function
with no parameter on the numerator and one parameter on the
denominator is

2r(b) 1
OFl(;b;Z)—— 1 t 2cosh 24/zt)dt
fr(bjj; ( )

Re(b) >% (1.5)

Definition 4: Convergence of hypergeometric function
Consider the series

F(a,c;z)zi%?—z

n=0

By use of the standard ratio test we obtain

(2),,(€), 2 _nt |
(a),(c),, 2" (n+1)

={Iim }|z| -0
(1.6)

The series (1.6) called the Confluent hypergeometric function
converges to zero as N — co.
This series is connected to the hypergeometric series and is

(a0, (6
©),

lim

(a+n)
(c+n)(n+1)

z
obtained as a limit of F [a, b;C;Bj as b—o oo .

F(a,c;z):!im F(a,b;c;%j:i . o

n=0

1.7)
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The derivative of the function F (a,b;c;z)is given as

iF(a b'C'Z):ii(a)n(b)n 2"

ax dxi (c) n!
:i(a)n(b)n 2 :i(a)n(b)n 2"

= (c), nt = (c) (h-D!

(1.9)

Welet m=n-1=n=m+1Ln=1 m=0.
Hence
d > (b) "
_F b m+1 m+1
dZ e Z mZ:O ( )m+1 ml

ab & a+1 b+1) 7"
-5 ) mi

m=0 m -

:aTbF(a+1,b+l;c+1;z)

(1.10)
The general formula based on repeated differentiation is

%F(a,b;C;z)zg(aEE;f)k o (azkcgkb)k (ariob ks k)

(1.11)
Similarly,

m

d > 1 " 1 1 z 1
—F(cz)= —== —=—F(c+}
dz (CZ) Z I %(c+1)m m! ¢ (o Z)

(1.12)
and general formula based on repeated differentiation is
d* 501 02" 1
—F(;ciz)= — = F(c+k;z
dz* (e:2) mz_o(c)k m!  (c), ( )
(1.13)
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2. SOLUTION OF EPD BY FOURIER TRANSFORM
METHOD

We solve the Euler-Poisson-Darboux (EPD) equation using
the Fourier transform method. The inverse Fourier transform
of the solution will be found using a convolution with the
Heaviside step function in order to obtain the solution. We
then extend our results into a generalized hypergeometric form
and we also discuss the differentiability of the solution.

We will solve the singular Cauchy problem in the space of
distributions with respect to the space coordinate. Let

t>0and xell"

Consider the EPD (1.1) Subject to the initial conditions (1.2).
For 4 =0 we take the Fourier transform wrt x on the RHS of
(1. 1) to get

—e"gxdx Z‘g, ‘u =

2.1)

where |g| =\ci+¢l +.57,

o =2+ 62 +..67

= Zn:‘giz‘ = A(5)

We again take the Fourier transform of the LHS of (1.1) wrt
x and combine it with (2.1) to get

o*u  kou

> +——+A(s Ju=0

ot t ot

(2.2)
Which belongs to the family of Bessel equation due to the

presence of —

Now taking Fourier transform on the initial conditions (1.2)
we get

u(s,0) = f(5)

(2.3)
and
U (5,0)=0

(2.9)

Depending on the value of k, we can choose a suitable
transformation to solve (1.1).

Let K =n—1 and referring to Manyonge et al
(2013), the EPD has been solved using the transformation
relation

n-2
U=t 2V(@) : 6= |t = VAt

(2.5)
we get
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ou_ (n-2) 0 5y
=Tttt 2 —4A
ot 2 7 849\/_

(2.6)
ou_
ot?
(n—Z)(nj D (n_g) gy
St P vt A
2 \2 T VA
(n ) n av I’] 2 82
- A+t 2 ZUA
2 J_+ 06
(-2 (n—2) n (n- z)av oV
=t 2 — t_z A
{ 2 (2) T J_ Frae
@.7)

Substituting (2.4), (2.5) and (2.6) in (1.1),

A (0-2)(n) o (12 &
e RS R G|

0o
_ n-2 _(n-2)
+n_1|: %t 2v+t 2 ﬂ

_(n-2)
JK}+At vso

t
or
v A v 40°—(n-2)
A+ X2 (JA) =+ =L av=0
00> 6 ( )80 46?
or
n-2
) - c
6_\2 + 1ov +1-| —2—||lv=0
06° 606 0
(2.8)
which is a Bessel differential equation of order _ whose
solution is
vi@)=AJ, , (6’) + BYH (0)
T =
(2.9

where A and B are constants and J N2
2

(9) and Yn;2 (6?) are
2

Bessel functions of order of first

and second kind respectively. Y, , (9) is singular at the
2

origin, ie. Y, , (6’) —>o asd—0
2
Hence we choose B = 0so that
15
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(2.10)

. (-1) et )™
‘]n(|g|t):§r(r +1)r(n+r+1)(g7]

Whose series expansion is

1 |g|t n_ 1 |g|t n+2
3 (left)= F(n+l)( J r(n+2) [7]

+4
R (513
2I0(n+3)| 2

n+6

+;[|€“}2+ ........
zlr(”Lz)

Thus (2.9) can be written as

n-2

et =, (=4 (5]
2

n-2 ns6
e e I e & R
H;;)Z 2r("2%)

(2.11)

(2.12)
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ast—0, u(c,0)=A (|g|]2 =F(5)=f(s)

n,{ 2
I
(2)

thefore

— n

f (G)F(E)
A=—ris

(e

2

or

U%W@W<)

a(g,t) = n—2 -2 (|§|t)
(E) 2 T
2
n-2
U =272 T( )fngqgh) 3, (et
2
(2.13)

Now T jjnaju@t "3, (6t0s

—0 2

(2.13 a)

We now write (2.13) in terms of the hypergeometric
function.

Recalling the definition of the Bessel function

3

Jv(z):r(wl)‘)ﬁ(”l;‘zfzj'

(2.14)

n-2
we then let v :T’ n= 2(v +1) and z =|g|t thus
(2.13) becomes

u(z) = ( j F(v+1)f(|g|)J (2).

(2.15)
Now the hypergeometric part appearing in (2.14) has the
following integral representation

2 1 1
OFI(;V+1;—ZZJ = Mj(l—tz)v_z cosh izt ) dit;
1

\/;F(v +;j 0
Re(v)>-= (2.16)

2
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z _
We now test the convergence of ,F | v +1,— : d* 2y 1 g j 1 s ~
( 4 j o [V+L——j o) m§om'{(v+l) e, F[{(v+l)+k},—7j, k=123..

We know that

2 n
(_ZJ (2.19)
.F [V +1: __] i . (2.19) is thus infinitely differentiable hence it is a smooth
prd nl V +1 function.

Hence by ratio test we have _
L\ 3. Inverse Fourier transform of u(¢,t) .
_z To complete the solution of (1.1) we have to determine the
lim [ 4 j (V +1) n!

| (v 1) [_24} (n+1)!

inverse Fourier transform of a(g,t) .

G(g, t) is not an L and hence we attempt to determine the
inverse by use of the function

z g(X):(tz—Xz)V;H(t—X);v>1
— ||m 4 (V+1)n 2
~ool(v+1) . (n+1) 3.1)
e where H is the Heaviside unit function defined by,
, H (1 x>t
(_ZJ (t=x)= 0:x<t
_jim ) (v, .
el (v+1) (v+1+n)(n+1) The multiplication of the even function (t2 - XZ) 2 pythe
Heaviside unit function H (t - X) allows us to take the
( Z] ‘ Fourier cosine transform of g (X )as;
4 ~
=li 0 i =
s (n+1) v+1+n) I . (s)=T.(9(x) x>
t
- EJ X*)" 2cos;xdx
Z 0

t 1 o 2r
J.t —x 5 = ( X) ~ 7 ) dx
0 r= F 2r+1)

=z
o
=
|
i
7\
<
+
P
|
N
N
N
Il
|o_
M
2
=
+ (&
22—
I
HIN

o = (-1) (5) | !
, el i S\ = EZ(]')ZAJ'XH (tz_XZ) 2dx
n _L _L /) F( r+1 0 (32)
N 4 _ i 4 where we may take t large enough.
S nl(v+1) Ami(v+l) | Now let

x* =t%u; 2xdx =t3du

RS
4 Hence,

(2.18)
In general,

17
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w (_ r 2r ¢ Y
gc(g):FZwItZF ut**(1-u) & \/th —x 2H t—x)cos(gx)dx
F(2r+1
2tu2
= (1) (gt)™" ! = L1 .
Z 2r+l I (1 u) i =2 2t F(v+1j-J”(tg)
2 2) ¢
Z t) (v+1 r+lj
2;;,0 2r+1 2 2)B3) (3.8)
i.e
But by duplication formula, t , , L
t°—x") 2cos(gx)dx
L r(2r+1)r@j !( ) (%)
r = |= L1
(r+2j ZZrF(I’+1) :\/Ez 2tvr(v+l).']v(tg)
2 2 s”
34 (3.9)
Hence, The inversion formula gives,
1 V
t2v = (-1)" (gt)” F(ZJ 2tvl“£ )\/7'[ . tcos
Z I'(2r+1) 22r1“(r+1)
_(+2 _ 2\~
1, ( 1jw (1) (ct)” = (15 7 H (%)
Ly iy I
2 2 )3 Tri(v+r+1) 35) (3.10)
' heref
The Bessel function J_ (X) is defined as Therefore, .
T (12 2\'"3
2oy . —(t -x*) 2H(t-x)
(-1 < IJV(tg cos(sx)d 2 -
1L(x)=Y— 2 o ¢ r(vel)2 e
: S Iri(v+r+1) Ty
(3.6) V>—=

§ ()T
s

. (st)

Hence,

(3.7
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(3.11)
Now from the above theorem, and taking

f(x)=0,
f(g)=06=1
and |
n-1=2m+1

(2.13a) can be written as

@{zvztvr(v+%j.M}

\/§t2v v
(3.12)

S
Hence, on comparing (3.8) and (3.9) we claim that the inverse
Fourier Transform of the equation
(2.13a)

18
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subject to the initial
conditionsu (x.0) = f (x) =&(x) and u, (x,0) =0on

the range [O, oo) is given by the function

g(x)= (t2 - xz)vé H(t—x)ie

F(v+lj

2 1 J (t

:—2 2 ZtVF(v+—l]._V(g)
Jat> 2 Y

9

F(v + 1)
- e 1))
2v v
J2t 2 S

{4

= t2v v

\/sz‘gt”r(wljm
2) ¢
t 1

%j(tz —x*) 2 H(t-x)cos(¢x)dx

0

1
Hence U (X,t) = (t2 —x? )VﬁE H (t — X) solves the EPD
(3.13)

CONCLUSION
Equation (3.13) represents the solution of (1.1) subject to the
conditions (1.2).
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