A Study on Quasi – Groups Satisfying Partial Associative Law with Unique Right Unit

Mini Thomas

Department of Mathematics MarThoma College, Tiruvalla, Pathanamthitta-689103,Kerala Email:minithomas67@gmail.com

Abstract: A Quasi- group is an algebraic structure resembling a group in the sense that division is possible. Quasi –groups differ from a group, that they are not necessarily be associative. In this paper we make a study of quasi- groups which satisfy Partial associative law and have a right unit. It is seen that these Quasi –groups have properties very similar to ordinary groups.

Keyword: Right unit Quasi-group

1. Introduction

The term Quasi –group was introduced by R.Moufang.Most of the results in the literature of Quasi – groups do depend upon special associative conditions. Also it is shown that the Quasi- group contains a set of minimal right unit sub-Quasi –group having no elements in common and at least one of them is contained in every sub-Quasi group of the Quasi-group. In this paper we make a study of those class of Quasi –Groups which satisfy an associative law 1 of the form

 $a(bc) = (ab)c_1$, c_1 is independent of b and has a right unit. 2.Preliminaries:

Definition 2.1. A quasi-group G is a set together with an operation of multiplication such that

1) the set is closed under multiplication.

 The equations ax = b and ya = b have unique solutions for x and y ,where a and b are any two (not necessarily distinct) elements of G

Condition (2) is sometimes referred to as quotient axiom. The quotient- axiom (2) implies both left and right cancellation laws .Since we are considering only finite quasi- groups, it is useful to note that every subset of G which is closed under multiplication satisfies the quotient- axiom and is therefore a sub-quasi group of G. From the quotient- axiom (2) it follows that every element a in G has a right unit e_a and a left unit e_a' defined by

```
ae_a = e_a'a = a
```

Definition 2.2. A quasi-group G with an identity element is called a loop.

We know that a finite set which is closed under an associative produt and in which both cancellation laws hold is a group. Hence a finite quasi –group differs from a group in that the associative law may fail to hold. The following are few examples of a quasi - group. 1. The set of integers Z under the binary operation, subtraction (-) forms a quasi- group.

2. The non- zero rational numbers (or non- zero real numbers) with division forms a quasi- group.

3 .The set of non- zero elements of any division algebra forms a quasi- group.

3. Quasi- group satisfying partial associative laws

In a Quasi –Group we can define a sort of partial associative law as follows.

If a, b, c are any three elements of G, then

 $\mathbf{a}(\mathbf{b}\mathbf{c}) = (\mathbf{a}\mathbf{b})\mathbf{c}_1$

where c_1 is independent of b.

(1) can be called as associative law 1 .In what follows ,unless otherwise stated ,G denotes a finite quasi – group .In the following theorem we investigate the conditions under which all the right units of a quasi –group form a sub –quasi group.

Theorem3.1.

(1)

The set R of all right units of G form a sub-quasi group and $a \rightarrow e_a$ is a homomorphism of G on R, where e_a denotes the right unit of a.

Proof : -

Since G is a quasi –group, every element $a \in G$ has a right unit e_a and a left unit e_a such that.

$$ae_a = e_a a = a.$$

Assume that G satisfies the law

(1) $a (bc) = (ab) c_1$, for all a, b, $c \in G$ and c_1 is

independent of b

since in (1) c_1 is independent of b, choose $b = e_a$

(2)
$$a(e_a c) = (ae_a)c_1$$

 $= ac_1$ which implies $c_1 = e_3c$.

Now we denote by $f_{a}(c)$ the element defined by the equation $e_{a} f_{a}(c) = c$, Where c is any element of G and a is any fixed element. But then,

We can define $f_a(e_ac) = e_ac$.

 $\mathbf{e}_{\mathbf{a}} \mathbf{f}_{\mathbf{a}} \left(\mathbf{e}_{\mathbf{a}} \mathbf{c} \right) = \mathbf{e}_{\mathbf{a}} \mathbf{c}.$

Now by the left – cancellation law we have

 $\mathbf{f}_{\mathbf{a}}\left(\mathbf{e}_{\mathbf{a}}\mathbf{c}\right)=\mathbf{c}.$

Therefore we can define the inverse function $f_a^1 off_a$ by

 $f_{a}^{1}(c) = e_{a}c.$ Then equation (1) becomes

(2) $\begin{bmatrix} a \ (bc) = (ab) c_1 \\ = (ab) (e_ac) \\ = (ab) f_a^{-1} (c). \\ and replacing c by f_a (c) on both side we get \\ (ab) c = a (b f_a (c)) \end{bmatrix}$

Now put $c = e_b$ in the first equation of (3) Then we get,

 $a (be_b) = (ab) f^1_a (e_b) \qquad [\because f^1_a (c) = e_a c]$ $ab = (ab) (e_a e_b)$ ie, (ab) $e_{ab} = (ab) (e_a e_b)$

 $(ab) e_{ab} - (ab) (e_a e_b)$ ⇒ $e_{ab} = e_a e_b$

Thus the mapping $a \rightarrow e_a$ is a homomorphism of G on R. Then to complete the proof of the theorem we have to prove that R is a sub-quasi –group of G.

Let $R = \{e_a / ae_a = a, \text{ for all } a \in G\}$

If e_a , $e_b \in R$ then

 $e_a e_b = \ e_{ab} \in R$

Next we show that $e_a x = e_b$ and $ye_a = e_b$ have unique solution for all a, b in G. since G is a quasi – group, ax = b and ya = b have unique solutions.

 \therefore There exists elements c and d such that ac = b and da = bThen,

 $e_a e_c = e_{ac} = e_b and$

 $e_d e_a = e_{da} = e_b$

$$\Rightarrow e_c e_d \in R.$$

Hence e_c is the solution of $e_a x = e_b$ and e_d is the solution of $ye_a = e_b$. Hence R is a sub-quasi-group of G.

Theorem 3.2.

Any finite quasi-group G satisfying law I, contains a set of minimal right unit sub-quasi-groups, no two of which have elements in common and at least one of which is contained in every sub-quasi-group of G.

Proof:-

From 3.1 it follows that the theorem homomorphism а $\rightarrow e_a$ maps Gon R. Then R could be mapped onto its right unit quasi-group R_1 , R₁to its right unit quasi-group R₂and so on. Since G is a finite quasi-group we finally reach a sub-quasi-group R_t which is mapped onto itself.

 $\begin{array}{cccc} \text{Since every sub-quasi-group of } R_t \text{must contain its} \\ \text{own} & \text{right} & \text{units,} & \text{it} & \text{follows} \\ \text{from theorem 3.1 that the mapping } a \rightarrow e_a \text{ is an} \end{array}$

automorphism of R_t and also of every sub-quasi group of R_t .

Let E_1, E_2, \ldots, E_r be the set of all minimal subquasi groups of R_t where 'minimal' means that each E_i does not contain any other sub-quasi-group of R_t

$$\begin{split} & \text{Suppose } a \in E_i \cap E_j. \\ & \text{Then } a \in E_i \text{and } a \in E_j \\ & \text{Since } a \rightarrow e_a \text{ is an automorphism , for,} \\ & a \in E_i , \quad e_a \in E_i \\ & \text{Similarly } a \in E_j \Rightarrow e_a \in E_j \\ & \therefore e_a \in E_i \cap E_j \end{split}$$

In any sub-quasi-group of R_t , the process $a \rightarrow e_a$ must terminate at some stage, since it is finite. That is, at some stage an element will be its own right unit. Applying this reasoning to E_i and E_j we see that $e_{a,i}$ the right unit of a become its own right unit and will belong to

 $E_i \cap E_j$

ie , $E_i \cap E_i$ is a sub-quasi-group of R_t .

But $E_i \cap E_j \subset E_i$ (and E_j) which contradicts the minimality of E_i .

$$:: E_i \cap E_j = \emptyset$$

Definition 3.3

If one of the minimal right unit sub-quasi group of a quasigroup G consists of a single element e, then ewill become its own right (and left) unit. In this case e will be called the principal unit.

4. QUASI – GROUPS WITH UNIQUE RIGHT UNIT:-

In this section we consider the quasi-groups which satisfy associative law I and has a unique right unit e.

ae = a for all
$$a \in G$$
.

With this hypothesis equation (2) of theorem 3.1 becomes

(4)
$$a (bc) = (ab) c^{s}$$

(ab) $c = a (bc^{s-1})$

respectively where $c^s = ec$ and $ec^{s-1} = c$

putting a = e in the first equation of (4) we get

$$(bc)^s = b^s c^s.$$

\therefore s is an automorphism of G

This idea is seen to be helpful in proving the following result:-

<u>*Theorem*</u>: 4.1 The set H, of all elements which commute with e, is a group, the largest group contained in G. *Proof* :-

Let
$$H = \{x \in G | xe = ex\}$$

we have to show that H is closed with respect to multiplication.

Let x,
$$y \in H$$

Then xe = ex and ye = ey
ie x = x^s and y = y^s
Now e (xy) = (xy)^s
= x^sy^s

(:: s is an automorphism)

ie, xy∈ H.

Al so since ex = x = xe for all $x \in H$, e is the identify in H. Since H is finite and closed under multiplication, H is a sub-quasi-group of G.

Let $a \in H$ and let a_{-1} , a^{-1} denote the left and right inverses of 'a' respectively.

Then the equation ax = e and ya = e have unique solutions in H.

ie, there exists a^{-1} , $a_{-1} \in H$ such that

$$a a^{-1} = a_{-1} a = e$$
Now $a a^{-1} = e \Rightarrow a_{-1} (aa^{-1}) = a_{-1} e$

$$\Rightarrow a_{-1} (a a^{-1}) = a_{-1}$$

$$\Rightarrow (a_{-1} a) (a^{-1})^{s} = a_{-1}$$

$$\Rightarrow e (a^{-1})^{s} = a_{-1}$$
(5)
$$\Rightarrow (a^{-1})^{s^{2}} = a_{-1}$$
Now to show that $a^{-1} = a_{-1}$

$$(a^{-1})^{s^{2}} = [(a^{-1})^{s}]^{s}$$

$$= (a^{-1})^{s} [\because (a^{-1})^{s} = a^{-1}]$$
(6)
$$= a^{-1}$$
From (5) and (6) we get
$$a^{-1} = a_{-1}$$

Hence the inverse exists in H. Let x, y, $z \in H$.

Now $x(yz) = (xy)z^s$

 $= (xy)z. \qquad [\because z^s = z)$

∴ Associative law holds in H.

Next we prove that H is the largest sub-group,

Contained in G. Let K be a sub-group of G such that $H \subset K$. Let $x \in K \Rightarrow xe = ex$

 $\Rightarrow xe = ex$ $\Rightarrow x \in H$ $\Rightarrow K \in H,$ $\therefore K = H.$

Hence the theorem.

If H is a sub quasi- group of a quasi-group G and if aH = Ha holds for all a in G, then G/H is a group.

Let G be any Abelian quasi-group with unique right unit e, and let ϕ (a) denote any power of a. Then to any such power ϕ there corresponds two sub-quasi-groups of G. The first, which we shall denote by G_{ϕ} consists of all elements x of G such that

IJFRCSCE | December 2019, Available @ http://www.ijfrcsce.org

 ϕ (x) = e,

and the second, $G^{(\phi)}$, consists of all elements of the form ϕ (x), where x runs through all elements of G.

<u>Theorem</u>: 4.2

The quotient quasi-group G/G_{ϕ} is isomorphic to $G^{(\phi)}$ where G_{ϕ} consists of all elements x of G such that.

$$\phi(\mathbf{x}) =$$

and $G^{(\phi)}$, all elements of the from ϕ (x), where x runs through all elements of G.

<u>Proof</u> :-

we know that G_{ϕ} denote the set of all elements x of G such that

$$\phi$$
 (x) = e

and $G^{(\phi)}$ consists of all elements of the from $\phi(x)$,

where x runs through all elements of G.

we have to show that

 $G/G_{\phi} \cong G^{(\phi)}.$

Define a function ψ :G/G_{ϕ} \rightarrow G^(ϕ).

First to show that ψ is well – defined.

Suppose $aG_{\phi} = bG_{\phi}$. Then $b \in aG_{\phi}$.

 \therefore b = ax for some x \in G_{ϕ}.

$$\phi$$
 (b) = ϕ (ax)

$$=\phi(\mathbf{a})\phi(\mathbf{x})$$

[:: G is an abelian quasi – group.]

$$= \phi(\mathbf{a}) \mathbf{e} [\because \mathbf{x} \mathbf{G}_{\phi}]$$
$$= \phi(\mathbf{a}).$$
$$\therefore \phi(\mathbf{a}) = \phi(\mathbf{b})$$

$$\therefore \phi(\mathbf{a}) = \phi(\mathbf{b}); \qquad (\mathbf{a}G_{\phi})\psi = (\mathbf{b}G_{\phi})\psi$$

Hence ψ is well – defined.

To show that ψ is a homomorphism.

For,

$$[(aG_{\phi}) (bG_{\phi}] \Psi = [(ab) G_{\phi}] \Psi$$
$$= \phi (ab)$$
$$= (ab)^{m}$$
$$= a^{m}b^{m}$$
$$= \phi (a) \phi (b)$$
$$= (aG_{\phi}) \Psi (bG_{\phi})\Psi.$$
$$[(aG_{\phi}) (bG_{\phi})] \Psi = (aG_{\phi}) \Psi (bG_{\phi})\Psi.$$

 $\therefore \psi$ is a homomorphism.

Next we have to show that ψ is one-one and onto. For that it is enough to show that ϕ (a) = ϕ (b), if and only if b lies in aG ϕ

> Let b lies in aG ϕ . To prove $\phi(a) = \phi(b)$. Since b lies in aG ϕ , b = ag where g \in G ϕ . $\therefore \phi(b) = \phi(ag)$ $= \phi(a) \phi(g)$ $= \phi(a) e [\because g \in G_{\phi}]$

> > $= \phi$ (a).

$\therefore \phi(a) = \phi(b).$

Conversely suppose ϕ (a) = ϕ (b). To show that b lies in aG_{ϕ} . For,

$$\phi$$
 (a₋₁ b)= ϕ (a₋₁) ϕ (b)
= ϕ (a₋₁) ϕ (a) [:: ϕ (a) = ϕ (b)]

 $= \phi (a_{-1} a)$ = e.

 $\therefore a_{-1}$ b belongs to G_{ϕ} .

So b belongs to aG_{ϕ} . Thus we get a one-one correspondence from G/G_{ϕ} onto $G^{(\phi)}$. So the correspondence

 $aG_{\phi} \leftrightarrow \phi(a)$

is an isomorphism between G/G_{ϕ} and $G^{(\phi)}$ Hence the result.

Acknowledgements

I am indebted to my esteemed teacher Dr.VSathyabhama, former professor, department of mathematics, University of Kerala for her inspiring guidance. Also I would like to thank the anonymous referees for their careful corrections and valuable comments on the original version of this paper.

References

- 1. Aczel.J: Lectures on Functional Equations and their Applications
- Albert A.A: Quasi-group 1,Trans .Amer. Math.Soc. Vol.54(1943)PP.507-519.
- 3. Fraleigh.J.B: A first course in Abstract algebra, Third Edition.
- 4. Hausmann .B.A & Ore Oystein : Theory of Quaisi-groups Amer.J.Math, Vol.59(1937), PP.983-1004.
- Murdoch. D.C: Quaisi-groups which satisfy certain generalized associative laws, Amer.J.math. Vol.61(1939), PP.509-522
- Quasigroup- Wikipedia <u>https://en.m.wikipedia.org</u>..