
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 8 203 – 207

203

IJFRCSCE | August 2017, Available @ http://www.ijfrcsce.org

New Hybrid Approach to Solve the 0/1, Bounded Knapsack Problem

Saher Manaseer/ (Corresponding Author)

Computer Science Dept. / King Abdullah II, Information

Technology Faculty

The University of Jordan, Amman, Jordan

 saher@ju.edu.jo

Huthaifa Almogdady (Author)

Computer Science Dept. / King Abdullah II, Information

Technology Faculty

The University of Jordan, Amman, Jordan

Huthaifa.cis@gmail.com

Abstract—Knapsack problem is one of the combinatorial optimization problems, consisting of selecting a subset of given items in such a way

that the total profit of the selected items doesn’t exceed the maximum of knapsack capacity. As well known that most of the famous algorithms

published nowadays work on either dynamic or greedy system as greedy is a fast technique and dynamic systems can produce an optimal solution

for the problem, however, as greedy function can solve the problem with high speed it cannot give an optimal solution and, sometimes, answers

are relatively far from optimality. Therefore, the dynamic approach may solve the problem with optimal solution but it consumes much time and

space. In order to merge advantages of these two approaches, in this proposed study we introduced an idea that generates a hybrid algorithm that is

based on the two methods, the dynamic and the greedy, to get the best performance for finding the best proximity to the optimal solutions.

Keywords- Knapsack; Greedy; Dynamic, Hybrid, Utilization

__*****___

I. INTRODUCTION

Combinatorial streamlining issue is a Knapsack issue that

accomplish. Boosting the advantage of items in a rucksack

without surpassing the limit [1]. An outstanding advancement

issue is considered as NP-hard family issues [2].The backpack

issue or rucksack is an issue in combinatorial improvement:

Given an arrangement of objects, each object with a mass and

esteem. The decision must be made about the quantity of

objects to incorporate into a collection so that the aggregated

weight is not equivalent to a given point of confinement and the

aggregated esteem is as high as possible. The mechanism gets

its name from the issue confronted by a person who is

compelled by a settled size rucksack and must fill it with the

most profitable items.

Backpack issue can be divided into two basic classes.

Limited rucksack issue, where the quantity of items is

constrained. In addition, unbounded rucksack issue, where the

quantity of items is not restricted. Moreover, these two types

have two adaptations of the issue. In 0/1 backpack issue. The

selection of items is binary. This means that the object is either

selected as a unit or not selected at all As for fragmentary

rucksack issue, items are distinct; objects are not necessary

selected as unit and can be partially selected. The proposed

algorithm addresses limited, 0/1 backpack issue.

Given two n-tuples of positive numbers Values as {v1, v2,

… ,vn} and Weights as {w1,w2,… ,wn} And W > 0, we wish

to decide subset that have the most important things with the

limitation of W.

Maximize subject to

 Boost subject to The backpack issue has been

contemplated for over a century, with early works dating back

as far as 1897.It is not known how the name "rucksack issue"

started. However, the issue was alluded to thusly in the early

works of mathematician Tobias Dantzig (1884–1956),

proposing that the name could have existed in old stories before

a numerical issue had been completely characterized [3].

This paper is sorted out as following: Section II for the

related work while Section III presents the approach more in

subtle elements for the proposed calculation in this study.

Segment IV talks about the reenactment setup utilized for

assessment purposes. Simulation results are introduced in

Section V. Lastly, Section VI finishes up the paper with the

conclusion and the future works.

II. RELATED STUDIES

The following studies consider as most recent studies that

cover the all phases of any recognition system, a lot of

approaches have been made to solve such important problem as

knapsack some of them are interested in the optimality. Other

approaches are in satisfy-ability. Next, this section gives

examples for these studies.

In [4], a new exact approach for the 0–1 Collapsing

Knapsack Problem was introduced; the authors proposed a

novel ILP formulation and a problem reduction procedure

together with an exact approach.

In [5], an Approximation scheme for the parametric

knapsack problem has been proposed. The authors, provided

the first (parametric) polynomial time approximation scheme

(PTAS) for the knapsack. They also made use of the

connection between the parametric problem and bi-criteria

problem in order to demonstrate that the parametric 0-1-

knapsack problem concedes a parametric FPTAS when the

parameter is restricted to the positive real line and slopes and

intercepts of the affine-linear profit functions of the items are

non-negative.

mailto:saher@ju.edu.jo
mailto:Huthaifa.cis@gmail.com

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 8 203 – 207

204

IJFRCSCE | August 2017, Available @ http://www.ijfrcsce.org

In [6] they presented a cost-optimal parallel algorithm for

the 0–1 knapsack problem and its performance on multicore

CPU and GP implementations, they suggested the cost-optimal

algorithm (COPA) on an EREW PRAM model with shared

memory to solve this problem. They also implemented COPA

on to cases one is multicore CPU bases architectures using

open MP and GPU based configurations using CUDA. Their

approach reduced the speedups up to 10.26 on multi core CPU

and 17.53 on GPU implementations.

In [7], they proposed an improved genetic algorithm based

approach to solve constrained knapsack problem in fuzzy

environment, were they brought forth an improved GA to solve

the problem, where by introducing “refining” and “repairing”

operations the genetic algorithm was improved. The proposed

GA improved the profit by an average of 19.06.

In [8], a Self-adaptive check and repair operator-based

particle swarm optimization for the multidimensional knapsack

problem was presented; he introduced the SACRO algorithm,

which dynamically and automatically changes the alternative

pseudo-utility ratio as the PSO algorithm runs. It was proved as

a result of the simulations and evaluations that the SACRO is

more competitive and robust than the simple or improved

CROs.

In [9], proposed Solving 0–1 Knapsack Problem using

Cohort Intelligence

Algorithm, the impact of different parameters on, the

advantages and limitations of the CI methodology are also

discussed and tested by the solving NP-hard combinatorial

problem such as the Knapsack problem (KP).

In [10], introduced The multidimensional 0–1 knapsack

problem: An overview, his paper surveyed the main results

published in the literature, its main focus is on the theoretical

properties as well as an approximate or exact solutions of this

special 0-1 program.

 In [11] A hybrid Approach for the 0-1

multidimensional Knapsack problem was introduced. Their

proposed approach combines the linear programming and tabu

search. They showed that their algorithm improves

significantly on the best known results of a set of more than

150 benchmark instances.

In [12] they presented a hybrid Genetic Algorithm (GA) for

solving the Multi-constrained 0–1 Knapsack Problem (MKP).

Based on the solution of the LP-relaxed MKP, the proposed

GA uses sophisticated repair and local improvement operators

which are applied to each newly generated solution. Care has

been taken to define these new operators in a way avoiding

problems with the loss of population diversity. The new

algorithm has been empirically compared to other previous

approaches by using a standard set of “large-sized” test data.

Results show that most of the time the new GA converges

much faster to better solutions.

And in [13] they proposed analyze several algorithm design

paradigms applied to a single problem the 0/1 Knapsack

Problem. The main goal of proposed paper is to present a

comparative study of the brute force, dynamic programming,

memory functions, branch and bound, greedy, and genetic

algorithms. The paper discusses the complexity of each

algorithm in terms of time and memory requirements, and in

terms of required programming efforts. Their experimental

results show that the most promising approaches are dynamic

programming and genetic algorithms. The paper examines in

more details the specifics and the limitations of these two

paradigms.

Also in [14] they proposed a method to work in problems in

combinatorial optimization. In this presented study they

consider their multi-objective extension (MOKP and

MOMKP), for which the aim is to obtain or to approximate the

set of efficient solutions. There methodology start as, they

classify and describe briefly the existing works that are

essentially based on the use of meta-heuristics. In a second

step, they propose the adaptation of the two phases Pareto local

search (2PPLS) to the resolution of the MOMKP. With this

aim, they use a very large scale neighborhood (VLSN) in the

second phase of the method that is the Pareto local search.

They compare our results to state of the art results and they

show that we obtain results never reached before by heuristics,

for the objective instances.

III. METHODOLOGY

The methodology of our proposed work contains of three

phases; Phase one is the initiative phase that creates working

area for preparing comparison values, and the second phase

works on the greedy approach, then the third phase deals with

dynamic. The following graph shows the methodology and the

working approach algorithm.

Figure 1: our methodology diagram

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 8 203 – 207

205

IJFRCSCE | August 2017, Available @ http://www.ijfrcsce.org

We introduced a new approach mixing both dynamic and

greedy approach; our methodology will split into 4 main steps

as following:

1. Using the weighted average that used on greedy to

have a descending table for these values; as will see

on next two steps this table will be used for both

selecting and comparing.

Calculate weighted average.

WA[i] = v[i] / w[i] for i=1, 2… n items; v: value; w:wight

Sort the items by WAi in decreased order.

2. Start selecting from up to down till we reach a

threshold - in our case the threshold should be the

maximum allowed weight- then will move to next

step.

Remain = W

Sum = 0

For i = 1 to n

If sum < W

B[i] = items[i]

Sum = sum + B(weights [i])

Remain = W - Sum

End If

End For

Part 1 matrix “C” contain remaining unselected items.

Part 2 matrix “Z “contain selected items.

3. Using a recurrence dynamic approach to deal with

lifted item and that shall happened after applying

some constraints to make replacements or adding as

necessary

If C =! 0

For j = 1 to n, where n is the length of C array

If selcted (L) == 0 &&selcted (O) == 1 &&newsorted (1,L) +

summation - newsorted (1,O) <= W &&newsorted (2,L) > newsorted

(2,O) ;

For z = y to 1, where y is the length of B array

If C(wa [j]) > B(wa [Z]) and Remain + B (weight [z]) =< W

B[z] = C[j]

End if

End for

End if

End for

4. Sorting remaining items according to values

For I from 1 to remaining items

 If item.weight <= the remaining weight

 Items.selected = true

 End if

End for

Selecting the best from remaining items that can be put in the

remaining weights.

Our methodology is based on reverse searching on already

obtained results from already exist dynamic and greedy

approaches to find a relation between that data and the table

that we obtained from step number 1 then find the applying

constraint to add them to the rest of item to make the last

selection and replacement step.

IV. IMPLEMENTATION AND RESULTS

Our implementation has been carried on HP laptop with:

8 G Ram, Core I5 processer, Windows 8 operating system and

Matlab as implementing and testing tool.

We made the simulation and implementation using MATLAB,

the generated code is as follow and down here result of time

and space complexity will be shown.

a. Time and Space Complexity

i. Space Complexity: we will use a*N+c for calculation

While:

 a = number of arrays

 N= number of element

c= number of used variable

 The Space complexity for our proposed algorithm = O(n)

So our approach is much better in space complexity comparing

with normal dynamic knapsack

That need O(m*n) which could be huge amount of space.

Figure 2: time comparison where Number of items is equal to the

max weight

Case 2 as shown in figure 3 when N is bigger than W.

ii. Time Complexity:

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 8 203 – 207

206

IJFRCSCE | August 2017, Available @ http://www.ijfrcsce.org

The main different between our approach and normal

dynamic that when maximum weight is larger than items

number we have beat time complexity in worst , best and

average case

Best Case: O (n log n) and its equal the time of sort

Average Case: calculation in process

Worst Case: O (n2) and its equal to time of comparing selected

results

Table 1 show both time and space complexity for the most

used algorithm approach for solving knapsack problem and if

the approaches provide optimal solutions or not.

Table 1: Comparison between approaches

 Time

complexity

Space

complexity

Optimality

in 0/1

Dynamic O(n*W) O(n*W) yes

Greedy O(n*log n) O(n) no

Backtracking O(2n) O(2n) yes

heuristic no

Our hybrid O(n^2) O(n) no

Figure 3: time comparison where Number of items is bigger than max

weight

Case 3 as shown in figure 3 when W is bigger than N.

Figure 4: time comparison where max weight is bigger than Number

of items

As we can notice that our approach is faster than dynamic

in both cases 1 and much more faster in 3, in case 1 it take

almost the half time, and in case 3 it toke less than 2.7% of

dynamic time, but in case 2 our system was 4 time slower than

dynamic , these differences in time caused by the dependency

of our system in reducing the used space and time on the

number of items more than max Wight, so we can notice that

when N=W and in N>W we do better.

0.001 0.01 0.095 0.95 9.5

0.

75000.

150000.

225000.

300000.

375000.

U
s
e
d

 s
p

a
c
e
 i
n

 M
B

Number of items

Space comparison

Our approach

Dynamic

Figure 5: Space comparison between ours and Dynamic

As a results of our hybrid approach comparing to the

dynamic one, these results shows on table 2 bellow, as it

appear from results our system gives 99.7% of optimal

solution as an average, where the rest of 0.3 % of none optimal

solutions, our solution is near by almost 99.95% near

optimality, which is very good results for a system that can

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 8 203 – 207

207

IJFRCSCE | August 2017, Available @ http://www.ijfrcsce.org

save up to thousands of times less in space as shown in figure

5 and much faster in the most cases.

Table 2: Results comparison between approaches

Approach

N=W N>W W>N

OPT* DFO** OPT DFO OPT DFO

Dynamic 100% 0 100% 0 100% 0

Ours 99.8% 0.02% 99.6% 0.11% 99.7% 0.01%

*OPT: Ratio of Optimal Results over 1000 iterations.

**DFO: Difference from Optimal which is a ratio

between the difference between optimal solution and our

results divided by the optimal solutions.

V. CONCLUSION AND FUTURE WORK

Knapsack problem is one of the combinatorial optimization

problems, consisting of selecting a subset of given items in

such a way that the total profit of the selected items doesn’t

exceed the maximum of knapsack capacity, our approach is

better than greedy and heuristic because it gives a better

solution and better than heuristic in time and space wise.

 Our approach is better than dynamic in space wise and

whenever weight is larger than number of items our

approaches have advantage in time complexity either, and as

the best case in our approach is better than another approaches

TIMES with O (n log n), and this time complexity came from

the time of sorting so any better sorting time algorithm will

enhance our method best case and make the approach much

better.

REFERENCES

[1] Mahajan, R., & Chopra, S. "Analysis of 0/1 Knapsack Problem

Using Deterministic and Probabilistic Techniques".

In Proceedings of the 2012 Second International Conference on

Advanced Computing & Communication Technologies (2012,

January). (pp. 150-155). IEEE Computer Society.

[2] Xiao-hua, X., Ai-bing, N., Ma, L., & An-bao, W. "Competitive

decision algorithm for multidimensional knapsack problem".

Proceedings of Management Science and Engineering,

2009.ICMSE 2009. International Conference, (2009,

September) (pp. 161-167). IEEE.

[3] Information taken from

http://en.wikipedia.org/wiki/Knapsack_problem Wikipedia,

accessed date 27/5/2014.

[4] Della Croce, F., Salassa, F., & Scatamacchia, R. "A new exact

approach for the 0–1 Collapsing Knapsack Problem". European

Journal of Operational Research, (2017). 260(1), 56-69.

[5] Giudici, A., Halffmann, P., Ruzika, S., & Thielen, C.

"Approximation schemes for the parametric knapsack problem".

Information Processing Letters, (2017). 120, 11-15.

[6] Li, K., Liu, J., Wan, L., Yin, S., & Li, K.. "A cost-optimal

parallel algorithm for the 0–1 knapsack problem and its

performance on multicore CPU and GPU implementations".

Parallel Computing, (2015), 43, 27-42.

[7] Changdar, C., Mahapatra, G. S., & Pal, R. K.. "An improved

genetic algorithm based approach to solve constrained knapsack

problem in fuzzy environment". Expert Systems with

Applications, (2015), 42(4), 2276-2286.

[8] Chih, M. "Self-adaptive check and repair operator-based particle

swarm optimization for the multidimensional knapsack

problem". Applied Soft Computing, (2015), 26, 378-389.

[9] Kulkarni, A. J., & Shabir, H. "Solving 0–1 knapsack problem

using cohort intelligence algorithm". International Journal of

Machine Learning and Cybernetics, (2016). 7(3), 427-441.

[10] Fréville, A. "The multidimensional 0–1 knapsack problem: An

overview". European Journal of Operational Research, (2004),

155(1), 1-21.

[11] Vasquez, M., & Hao, J. K.. "A hybrid approach for the 0-1

multidimensional knapsack problem". In IJCAI , (2001, August),

(pp. 328-333).

[12] Raidl, G. R. "An improved genetic algorithm for the

multiconstrained 0-1 knapsack problem". In Evolutionary

Computation Proceedings, 1998. IEEE World Congress on

Computational Intelligence., The 1998 IEEE International

Conference, (1998, May), p. 207-211. IEEE.

[13] Hristakeva, M., & Shrestha, D. "Different Approaches to Solve

the 0/1 Knapsack Problem." (2004), Retrieved November, 3,

/Online:[http://www.micsymposium.org/mics_2005/papers.2012

paper102.pdf]

[14] Lust, T., & Teghem, J. "The multiobjective multidimensional

knapsack problem: a survey and a new approach". International

Transactions in Operational Research, (2012). 19(4),495-520.

http://en.wikipedia.org/wiki/Knapsack_problem

