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Abstract—Knapsack problem is one of the combinatorial optimization problems, consisting of selecting a subset of given items in such a way 

that the total profit of the selected items doesn’t exceed the maximum of knapsack capacity. As well known that most of the famous algorithms 

published nowadays work on either dynamic or greedy system as greedy is a fast technique and dynamic systems can produce an optimal solution 

for the problem, however, as greedy function can solve the problem with high speed it cannot give an optimal solution and, sometimes, answers 

are relatively far from optimality. Therefore, the dynamic approach may solve the problem with optimal solution but it consumes much time and 

space. In order to merge advantages of these two approaches, in this proposed study we introduced an idea that generates a hybrid algorithm that is 

based on the two methods, the dynamic and the greedy, to get the best performance for finding the best proximity to the optimal solutions. 
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I. INTRODUCTION 

Combinatorial streamlining issue is a Knapsack issue that 

accomplish. Boosting the advantage of items in a rucksack 

without surpassing the limit [1]. An outstanding advancement 

issue is considered as NP-hard family issues [2].The backpack 

issue or rucksack is an issue in combinatorial improvement: 

Given an arrangement of objects, each object with a mass and 

esteem. The decision must be made about the quantity of 

objects to incorporate into a collection so that the aggregated 

weight is not equivalent to a given point of confinement and the 

aggregated esteem is as high as possible. The mechanism gets 

its name from the issue confronted by a person who is 

compelled by a settled size rucksack and must fill it with the 

most profitable items. 

Backpack issue can be divided into two basic classes. 

Limited rucksack issue, where the quantity of items is 

constrained. In addition, unbounded rucksack issue, where the 

quantity of items is not restricted. Moreover, these two types 

have two adaptations of the issue. In 0/1 backpack issue. The 

selection of items is binary. This means that the object is either 

selected as a unit or not selected at all As for fragmentary 

rucksack issue, items are distinct; objects are not necessary 

selected as unit and can be partially selected. The proposed 

algorithm addresses limited, 0/1 backpack issue.  

Given two n-tuples of positive numbers Values as {v1, v2, 

… ,vn} and Weights as {w1,w2,… ,wn} And W > 0, we wish 

to decide subset that have the most important things with the 

limitation of W.  

Maximize          subject to 

 
    Boost subject to The backpack issue has been 

contemplated for over a century, with early works dating back 

as far as 1897.It is not known how the name "rucksack issue" 

started. However, the issue was alluded to thusly in the early 

works of mathematician Tobias Dantzig (1884–1956), 

proposing that the name could have existed in old stories before 

a numerical issue had been completely characterized [3]. 

This paper is sorted out as following: Section II for the 

related work while Section III presents the approach more in 

subtle elements for the proposed calculation in this study. 

Segment IV talks about the reenactment setup utilized for 

assessment purposes. Simulation results are introduced in 

Section V. Lastly, Section VI finishes up the paper with the 

conclusion and the future works. 

II. RELATED STUDIES 

The following studies consider as most recent studies that 

cover the all phases of any recognition system, a lot of 

approaches have been made to solve such important problem as 

knapsack some of them are interested in the optimality. Other 

approaches are in satisfy-ability. Next, this section gives 

examples for these studies. 

In [4], a new exact approach for the 0–1 Collapsing 

Knapsack Problem was introduced; the authors proposed a 

novel ILP formulation and a problem reduction procedure 

together with an exact approach. 

In [5], an Approximation scheme for the parametric 

knapsack problem has been proposed. The authors, provided 

the first (parametric) polynomial time approximation scheme 

(PTAS) for the knapsack. They also made use of the 

connection between the parametric problem and bi-criteria 

problem in order to demonstrate that the parametric 0-1-

knapsack problem concedes a parametric FPTAS when the 

parameter is restricted to the positive real line and slopes and 

intercepts of the affine-linear profit functions of the items are 

non-negative. 
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In [6] they presented a cost-optimal parallel algorithm for 

the 0–1 knapsack problem and its performance on multicore 

CPU and GP implementations, they suggested the cost-optimal 

algorithm (COPA) on an EREW PRAM model with shared 

memory to solve this problem. They also implemented COPA 

on to cases one is multicore CPU bases architectures using 

open MP and GPU based configurations using CUDA. Their 

approach reduced the speedups up to 10.26 on multi core CPU 

and 17.53 on GPU implementations. 

In [7], they proposed an improved genetic algorithm based 

approach to solve constrained knapsack problem in fuzzy 

environment, were they brought forth an improved GA to solve 

the problem, where by introducing “refining” and “repairing” 

operations the genetic algorithm was improved. The proposed 

GA improved the profit by an average of 19.06. 

In [8], a Self-adaptive check and repair operator-based 

particle swarm optimization for the multidimensional knapsack 

problem was presented; he introduced the SACRO algorithm, 

which dynamically and automatically changes the alternative 

pseudo-utility ratio as the PSO algorithm runs. It was proved as 

a result of the simulations and evaluations that the SACRO is 

more competitive and robust than the simple or improved 

CROs. 

In [9], proposed Solving 0–1 Knapsack Problem using 

Cohort Intelligence 

Algorithm, the impact of different parameters on, the 

advantages and limitations of the CI methodology are also 

discussed and tested by the solving NP-hard combinatorial 

problem such as the Knapsack problem (KP). 

In [10], introduced The multidimensional 0–1 knapsack 

problem: An overview, his paper surveyed the main results 

published in the literature, its main focus is on the theoretical 

properties as well as an approximate or exact solutions of this 

special 0-1 program.  

       In [11] A hybrid Approach for the 0-1 

multidimensional Knapsack problem was introduced. Their 

proposed approach combines the linear programming and tabu 

search. They showed that their algorithm improves 

significantly on the best known results of a set of more than 

150 benchmark instances. 

In [12] they presented a hybrid Genetic Algorithm (GA) for 

solving the Multi-constrained 0–1 Knapsack Problem (MKP). 

Based on the solution of the LP-relaxed MKP, the proposed 

GA uses sophisticated repair and local improvement operators 

which are applied to each newly generated solution. Care has 

been taken to define these new operators in a way avoiding 

problems with the loss of population diversity. The new 

algorithm has been empirically compared to other previous 

approaches by using a standard set of “large-sized” test data. 

Results show that most of the time the new GA converges 

much faster to better solutions. 

And in [13] they proposed analyze several algorithm design 

paradigms applied to a single problem the 0/1 Knapsack 

Problem. The main goal of proposed paper is to present a 

comparative study of the brute force, dynamic programming, 

memory functions, branch and bound, greedy, and genetic 

algorithms. The paper discusses the complexity of each 

algorithm in terms of time and memory requirements, and in 

terms of required programming efforts. Their experimental 

results show that the most promising approaches are dynamic 

programming and genetic algorithms. The paper examines in 

more details the specifics and the limitations of these two 

paradigms. 

Also in [14] they proposed a method to work in problems in 

combinatorial optimization. In this presented study they 

consider their multi-objective extension (MOKP and 

MOMKP), for which the aim is to obtain or to approximate the 

set of efficient solutions. There methodology start as, they 

classify and describe briefly the existing works that are 

essentially based on the use of meta-heuristics. In a second 

step, they propose the adaptation of the two phases Pareto local 

search (2PPLS) to the resolution of the MOMKP. With this 

aim, they use a very large scale neighborhood (VLSN) in the 

second phase of the method that is the Pareto local search. 

They compare our results to state of the art results and they 

show that we obtain results never reached before by heuristics, 

for the objective instances. 

III. METHODOLOGY 

The methodology of our proposed work contains of three 

phases; Phase one is the initiative phase that creates working 

area for preparing comparison values, and the second phase 

works on the greedy approach, then the third phase  deals with 

dynamic. The following graph shows the methodology and the 

working approach algorithm. 

 
 

Figure 1: our methodology diagram 
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We introduced a new approach mixing both dynamic and 

greedy approach; our methodology will split into 4 main steps 

as following: 

1. Using the weighted average that used on greedy to 

have a descending table for these values; as will see 

on next two steps this table will be used for both 

selecting and comparing. 

 

Calculate weighted average. 

WA[i] = v[i] / w[i] for i=1, 2… n items; v: value; w:wight 

Sort the items by WAi in decreased order. 

 

2. Start selecting from up to down till we reach a 

threshold - in our case the threshold should be the 

maximum allowed weight- then will move to next 

step. 

Remain = W 

Sum = 0 

For i = 1 to n 

If sum < W 

B[i] = items[i] 

Sum = sum + B(weights [i]) 

Remain = W - Sum 

End If 

End For 

 

Part 1 matrix “C” contain remaining unselected items. 

Part 2 matrix “Z “contain selected items. 

 

3. Using a recurrence dynamic approach to deal with 

lifted item and that shall happened after applying 

some constraints to make replacements or adding as 

necessary 

 

If C =! 0 

For j = 1 to n, where n is the length of C array 

If  selcted (L) == 0 &&selcted (O) == 1 &&newsorted (1,L) + 

summation - newsorted (1,O) <= W &&newsorted (2,L) > newsorted 

(2,O) ; 

For z = y to 1, where y is the length of B array 

If C(wa [j]) > B(wa [Z]) and Remain + B (weight [z]) =< W 

B[z] = C[j] 

End if 

End for 

End if 

End for 

 

4. Sorting remaining items according to values 

 

For I from 1 to remaining items 

 If  item.weight <= the remaining weight 

 Items.selected = true 

              End if 

End for 

 

Selecting the best from remaining items that can be put in the 

remaining weights. 

 

Our methodology is based on reverse searching on already 

obtained results from already exist dynamic and greedy 

approaches to find a relation between that data and the table 

that we obtained from step number 1 then find the applying 

constraint to add them to the rest of item to make the last 

selection and replacement step. 

IV. IMPLEMENTATION AND RESULTS 

Our implementation has been carried on HP laptop with: 

8 G Ram, Core I5 processer, Windows 8 operating system and 

Matlab as implementing and testing tool. 

We made the simulation and implementation using MATLAB, 

the generated code is as follow and down here result of time 

and space complexity will be shown. 

 

a. Time and Space Complexity 

i. Space Complexity: we will use a*N+c for calculation 

While: 

 

 a = number of arrays  

 N= number of element 

c= number of used variable 

 

      The Space complexity for our proposed algorithm = O(n) 

So our approach is much better in space complexity comparing 

with normal dynamic knapsack  

That need O(m*n) which could be huge amount of space. 

 

 

Figure 2: time comparison where Number of items is equal to the 

max weight 

 

Case 2 as shown in figure 3 when N is bigger than W. 

 

ii. Time Complexity: 
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The main different between our approach and normal 

dynamic that when maximum weight is larger than items 

number we have beat time complexity in worst , best and 

average case  

 

Best Case: O (n log n) and its equal the time of sort 

Average Case: calculation in process 

Worst Case: O (n2) and its equal to time of comparing selected 

results 

 

Table 1 show both time and space complexity for the most 

used algorithm approach for solving knapsack problem and if 

the approaches provide optimal solutions or not. 

 

Table 1: Comparison between approaches 

 Time 

complexity 

Space 

complexity 

Optimality 

in 0/1 

Dynamic  O(n*W) O(n*W) yes 

Greedy  O(n*log n) O(n) no 

Backtracking  O(2n) O(2n) yes 

heuristic    no 

Our hybrid  O(n^2) O(n) no 

 

 
 

Figure 3: time comparison where Number of items is bigger than max 

weight 

Case 3 as shown in figure 3 when W is bigger than N. 

 

 
Figure 4: time comparison where max weight is bigger than Number 

of items 

 

As we can notice that our approach is faster than dynamic 

in both cases 1 and much more faster in 3, in case 1 it take 

almost the half time, and in case 3 it toke less than 2.7% of 

dynamic time, but in case 2 our system was 4 time slower than 

dynamic , these differences in time caused by the dependency 

of our system in reducing the used space and time on the 

number of items more than  max Wight, so we can notice that 

when N=W and in N>W we do better. 
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Figure 5: Space comparison between ours and Dynamic 

 

As a results of our hybrid approach comparing to the 

dynamic one, these results shows on table 2 bellow, as it 

appear from results our system gives 99.7% of optimal 

solution as an average, where the rest of 0.3 % of none optimal 

solutions, our solution is near by almost 99.95% near 

optimality, which is very good results for a system that can 
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save up to thousands of times less in space as shown in figure 

5 and much faster in the most cases. 

 

Table 2: Results comparison between approaches 

 

Approach 

N=W N>W W>N 

OPT* DFO** OPT DFO OPT DFO 

Dynamic 100% 0 100% 0 100% 0 

Ours 99.8% 0.02% 99.6% 0.11% 99.7% 0.01% 

 

*OPT: Ratio of Optimal Results over 1000 iterations. 

**DFO: Difference from Optimal which is a ratio 

between the difference between optimal solution and our 

results divided by the optimal solutions. 

V. CONCLUSION AND FUTURE WORK 

Knapsack problem is one of the combinatorial optimization 

problems, consisting of selecting a subset of given items in 

such a way that the total profit of the selected items doesn’t 

exceed the maximum of knapsack capacity, our approach is 

better than greedy and heuristic because it gives a better 

solution and better than heuristic in time and space wise. 

     Our approach is better than dynamic in space wise and 

whenever weight is larger than number of items our 

approaches have advantage in time complexity either, and as 

the best case in our approach is better than another approaches 

TIMES with O (n log n), and this time complexity came from 

the time of sorting so any better sorting time algorithm will 

enhance our method best case and make the approach much 

better. 
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