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Abstract: 

UAVs (Unmanned aerial vehicles) are being utilised more frequently in wireless communication networks of the Beyond Fifth Generation 

(B5G) that are equipped with a high-computation paradigm and intelligent applications. Due to the growing number of IoT (Internet of 

Things) devices in smart environments, these networks have the potential to produce a sizeable volume of heterogeneous data.This research 

propose novel technique in UAV based edge computing resource allocation and routing by machine learning technique. here the UAV-

enabled MEC method regarding emerging IoT applications as well as role of machine learning (ML) has been analysed. In this research the 

UAV assisted edge computing resource allocation has been carried out using Monte Carlo federated learning based access network. Then the 

routing through UAV network has been carried out using trajectory based deterministic reinforcement collaborative routing protocol.We 

specifically conduct an experimental investigation of the tradeoff between the communication cost and the computation of the two possible 

methodologies.The key findings show that, despite the longer connection latency, the computation offloading strategy enables us to give a 

significantly greater throughput than the edge computing approach. 
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1. Introduction: 

Communications of the fifth generation (5G) and beyond are 

primarily distinguished by (i) extremely high connectivity, 

(ii) ultra-reliability, and (iii) minimal latency.Fulfilling these 

goals in the face of the explosive expansion of IoT 

applications is a difficult challenge, particularly in situations 

with high levels of dynamicity and heterogeneity 

[1].Adopting unmanned aerial vehicles (UAVs) as flying BS 

or aerial user equipments (UEs) is a potential strategy 

(BSs).UAV-based communications, in particular, can boost 

the performance of the network in emergency situations by 

offering quick service recovery and offloading in densely 

populated environments.The standardising bodies [2] and 

academics are both interested in these traits.Additionally, 

the use of machine learning (ML) and artificial intelligence 

(AI) approaches in wireless networks can use intelligence to 

address a variety of problems.As a result, the integration of 

AI/ML with UAVs seems to be strongly associated across 

domains, applications, and network levels, offering unheard-

of speed improvements and complexity reduction.In the 

subsections that follow, a succinct introduction to the fields 

of UAVs and ML is provided, and pertinent surveys are 

reviewed. This helps to highlight the gap in the literature 

that has inspired the current work [3].The Open Edge 

Computing (OEC) programme was introduced by Vodafone, 

Intel, and Huawei in collaboration with Carnegie Mellon 

University (CMU) in June 2015 in order to go 

forward.Similar to this, industry heavyweights Cisco, 

Microsoft, Intel, Dell, and ARM teamed together with 

Princeton University to form the Open Fog Consortium 

(OFC) in November 2015 [4].By utilising its telco cloud 

platform, a world leader and member of MAEC_ETSI ISG, 

Nokia, also suggested a solution called multi-access edge 

computing (MEC).This platform efficiently processes data 
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right at edge of mobile network, bringing flexibility, 

scalability, and efficiency to a number of BS.Similar to this, 

Dell has created an edge computing architecture that enables 

edge analytics using a variety of power sources.Leading 

businesses including Microsoft, Sun, IBM, and Oracle have 

been working on development of cloudlets for latency-

sensitive computing as a result of the recent shift from 

client/server to distributed computing methods 

[5].Transmission of computational resources on demand 

through the Internet is referred to as CC.It provides 

consumers with a vast array of services and practically 

limitless resources.All data from physical assets is moved to 

cloud for storage as well as in-depth analysis in classic cloud 

systems.Shifting computation-intensive jobs to core CC 

platform is an efficient method for data processing since the 

cloud has greater computational capacity than the devices at 

the network edge [6]. 

The contribution of this research is as follows: 

1. To propose novel technique in UAV based edge 

computing resource allocation as well as routing by 

machine learning technique. 

2. To develop UAV assisted edge computing resource 

allocation has been carried out using Monte Carlo 

federated learning based access network 

3. To design routing through UAV network has been 

carried out using trajectory based deterministic 

reinforcement collaborative routing protocol 

 

2. Related works: 

The goal of resource management in MEC is to minimise 

system latency [7], energy consumption [8], and overall 

method latency and/or energy consumption costs [9]. In 

[10], the tradeoff problem is examined for computing 

networks with fog node cooperation with goal of reducing 

fog node reaction time within a specified power efficiency 

restriction.In order to reduce computation delay while 

maintaining a low overall computation energy consumption, 

work [11] studied joint service caching as well as task 

offloading problem in dense network.With goal of reducing 

the overall job duration while adhering to energy budget 

restrictions, author [12] looked into the MEC task offloading 

issue in software-described ultra-dense network.For 

minimising system latency of all mobile devices, author in 

[13] developed a joint communication as well as 

computation RAissue under collaboration of CC and EC.In 

order to investigate energy-delay tradeoff dilemma in a 

MECCmethod, work [14] developed a multiuser evaluation 

offloading game.In order to reduce total energy cost as well 

as less delay among all users, author [15] jointly optimised 

the offloading decisions of all users as well as resource 

allocation (RA).To reduce overhead of local energy 

consumption as well as simulation time costs, work [16] 

presented a distributed joint computation offloading as well 

as RA optimization strategy in heterogeneous networks with 

MEC. Particularly, case where number of MUs enhances 

explosively or network facilities are sparsely dispersed does 

not apply to the existing MEC approaches [17].Authors in 

[18] have been summarized journey of ML in the last thirty 

years and roles for the next generation wireless network as 

road for best optimization technique. To achieving this 

ambitious goal of future intelligent wireless technology and 

manage the complexity of heterogeneous nature of the 

network structures and wireless service using machine 

learning algorithm for intelligent decision making from edge 

level. The authors in [19] have been emphasized about the 

role of diverse ML methods in different key problems of 

networking across various network technologies. Works are 

realized on Deep Reinforcement Learning (DRL) method 

surveys for cellular network, next generation wireless 

networks, self-organization cellular network [20]. DRL is a 

machine learning algorithm that has recently gained 

popularity for managing edge computer resources and is an 

effective optimization method for radio access 

networks.DRL has recently [21] been utilised as an 

emerging tool to successfully address a variety of issues and 

challenges in contemporary networks like HetNets, Vehicle 

to Vehicle (V2V), Machine to Machine (M2M), Vehicle to 

Everything (V2I), Self-Organization Cellular Network, and 

UAV Network become more decentralised, ad hoc, and 

autonomous in nature [22]. 

 

3. System model: 

This section discusses novel technique in UAV based edge 

computing resource allocation and routing by machine 

learning technique. here the UAV-enabled MEC method 

regarding emerging IoT applications as well as role of ML 

has been analysed. In this research the UAV assisted edge 

computing resource allocation has been carried out using 

Monte Carlo federated learning based access network. Then 

the routing through UAV network has been carried out using 

trajectory based deterministic reinforcement collaborative 

routing protocol. 

Network model: 

We take into account a unidirectional route with M UAVs 

positioned along it, as seen in Figure 1.Each UAV has a 

MEC server with constrained computational power. We 

write M = 1,..., M to represent the ID set of UAVs.We 

partition the road into M segments to make it easier to 
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describe, and we designate ID set of roads as L = L1, L2,..., 

LM.The Poisson distribution is followed by the N vehicles 

that arrive at the road's beginning.Or, to put it another way, 

vehicle I can offload a job, λi,jdi, to MEC server on UAV j 

and evaluate remaining task, 1 − λi,j  di, locally,describexi,j 

as choice made by vehicle I meaning xi,j∈ {0, 1}.In 

particular, xi,j = 1 if vehicle I selects UAV j for job 

offloading and xi,j = 0 otherwise. Additionally, our model of 

the relevant system includes an eavesdropper named Eve 

who has the ability to intercept the sent data Ξi. 

 
Figure-1 Network model for MEC_UAV 

 

Communication Model:Due to high altitude of UAV, LoS 

links are far more prevalent in the UAV-enabled network 

than other channel damages like shadowing or small-scale 

fading.Consequently, free-space route loss model can be 

used to represent the uplink channel gain from MU I to 

UAV in eq. (1). 

ℎ𝑖
UL ≜ 𝛼0(𝑑𝑖

UL)
−2

=
𝛼0

∥∥𝑄𝑖
MU−𝑄UAV∥∥

2   (1) 

where dUL I is distance from MU I to UAV, is Euclidean 

norm of a vector, and 0 is received power at reference 

distance of 1 m for a transmission power of 1 W. Similar to 

that, UAV's downlink channel gain to EC j can be expressed 

as eq. (2) 

ℎ𝑗
DL ≜ 𝛼0(𝑑𝑗

DL)
−2

=
𝛼0

∥
∥𝑄UNV−𝑄𝑗

FC
∥
∥2

  (2) 

where dDL j stands for the distance between the UAV and 

the EC in question. For the purpose of bandwidth sharing in 

MUs during task offloading, we presumptively use the 

FDMA protocol.The attainable uplink transmission data rate 

from MU I to UAV is written as follows using Shannon's 

capacity in eq. (3): 

𝑅𝑖
UL = 𝐵𝑖

UIlog2⁡ (1 +
ℎ𝑖
UL𝑃𝑖

MU

𝜎2
)   (3) 

where BUL I PMU I and 2 stand for the bandwidth that has 

been given to MU I MU i's transmit power, and noise power 

at UAV.For sake of simplicity, consider both ECs and 

UAVs have same noise power. It can, however, be simply 

extended to the situation in which they are different.Similar 

to that, the UAV to EC j downlink transmission data rate is 

calculated as eq. (4) 

𝑅𝑗
DU = 𝐵𝑗

Ddlog2⁡ (1 +
ℎ𝑗
DL𝑃TX

UAV

𝜎2
)  (4) 

where BDL j and PUAV TX stand for the transmit power of 

the UAV and the per-device bandwidth that has been 

allotted to EC j, respectively. 

 

Monte Carlo federated learning based access network in 

resource allocation: 

By performing four phases, Monte Carlo creates a search 

tree iteratively (Figure 2).The edges of the tree correspond 

to activities, while each node in the tree represents a single 

state.A child-selection policy is applied iteratively during 

the selection phase until a leaf node1 is reached. 

 
Figure 2: Stages of Monte Carlo 

 

We take into account a FL instance made up of a number of 

ground devices connected to a number of parameter servers 

located on various UAVs in the sky.The multi-UAV enabled 

network, as depicted in Fig. 4, is made up of N UAVs and K 

single-antenna devices, represented by N = 1,..., N and K = 

1,..., K.Mobile devices are dispersed over the ground, as 

shown in Fig. 4, and several UAVs fly in sky to give 

wireless services for them via FDMA. 
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Figure. 3. Federated learning-based UAV-enabled wireless 

networks. 

 

Let wk signify local methodspecifications of k-th device, Dk 

is set of training dataset utilised at k-th device, and wn 

denote model specifications associated to global method of 

n-th UAV server.Sum loss function on k-th device's training 

dataset Dk can be written as eq. (5) 

𝐹𝑘(𝐰𝑛) =
1

|𝒟𝑘|
∑𝑖∈𝒟𝑘

 𝑓(𝐰𝑛; 𝐬𝑘,𝑖 , 𝑧𝑘,𝑖), ∀𝑘 ∈ 𝐾1 

 (5) 

where |Dk| denotes set's cardinality. Average global loss 

function using dispersed local datasets of all chosen devices 

is thus described at n-th UAV server as eq. (6) 

𝐹(𝐰𝑛) ≜ ∑𝑘∈𝒦𝑛
 
|𝒟𝑘|𝐹𝑘(𝐰𝑛)

|𝒟𝑛|
=

1

|𝒟𝑛|
∑𝑘∈𝒦𝑛

 ∑𝑖∈𝒟𝑘
 𝑓(𝐰𝑛;𝐬𝑘,𝑖 , 𝑧𝑘,𝑖)  (6) 

where Kn is collection of devices connected to nth UAV 

server, and Kn = |Kn| is total number of choosed devices, 

and Dn| = P k∈Kn |Dk| is sum of data samples from all 

choosed devices at nth UAV-enabled cell.Finding ideal 

model specifications at n-th UAV server that minimises 

overall loss function is goal of FL job by eq. (7). 

𝐰𝑛
∗ = arg⁡min𝐹(𝐰𝑛), ∀𝑛 ∈ 𝒩  (7) 

For uplink channel access, consider that OFDMA approach 

is employed, with every UAV-enabled cell having M 

orthogonal uplink subchannels that are shared by all 

cells.Each UAV server in this scenario will experience inter-

cell interference (ICI) from neighbouring gadgets connected 

to other cells using the same frequency band. The received 

SINR over designated subchannel m at nth UAV server in 

uplink is therefore described as when k-th device is 

connected to n-th UAV server by eq. (8). 

𝑆𝐼𝑁𝑅𝑛,𝑘,𝑚
U =

𝑃𝑘,𝑚
U 10

−𝑡𝑚,𝑘/10

∑𝑘′∈𝑅′,𝑘′≠𝑘  𝑃𝑘′,𝑚
U 10

−𝑡𝑚,𝑘/10+𝜎2
  (8) 

where σ 2  stands for power of Gaussian noise and P U k,m 

is transmit power of k-th device assigned to m-th 

subchannel.ICI received at UAV server n across m-th 

subchannel, which is produced by adjacent devices 

connected by other cells, is also known as 

∑𝑘′∈𝐾′,𝑘′≠𝑘  𝑃𝑘′,𝑚
U 10−𝑙𝑚,𝑖/10.As a result, the uplink data rates 

that can be achieved for k-th device over designated 

subchannels are stated as eq. (9) 

𝑅𝑘
U = 𝐵sub∑𝑚=1

𝑀   (𝜒𝑛,𝑘,𝑚log2⁡(1 + 𝑆𝐼𝑁𝑅𝑛,𝑘,𝑚
U )) 

 (9) 

The amount of CPU cycles utilized to train the method on a 

single sample of data at kth device and the nth UAV server, 

are denoted by the abbreviations Ck and Cn.Let's say that fk 

and fn stand for the computing capabilities of device k and 

UAV server n, and that 𝑓𝑘 ∈ (𝑓𝑘
min, 𝑓𝑘

max) with 𝑓𝑘
min and 

𝑓𝑘
maxdenotes the corresponding lowest and high CPU 

computation.As a result, during t-th time slot, local 

methodevaluation latency of device k as well as global 

method aggregation latency of UAV server n are given by 

eq. (10) 

𝑇𝑘
Loc, ,𝑡 = |𝒟𝑘|𝐶𝑘/𝑓𝑘, ∀𝑘 

𝑇𝑛
𝐺𝑙𝑜,𝑡 = |𝒟𝑛|𝐶𝑛/𝑓𝑛, ∀𝑛  (10) 

To broadcast global methodspecifications to connected 

devices, each UAV server needs to broadcast Ln bits, where 

Ln is the number of bits. The global model parameters 

broadcast latency for n-th UAV server is written as𝑇𝑛
D,𝑡 =

𝐿𝑛/𝑅𝑛
D,𝑡 , ∀𝑛. 

In order to reduce the FL methodsimulation time as well as 

learning accuracy loss, we design UAV placements, control 

subchannel, and transmit power resources. We specify 

execution time cost in nth UAV-enabled cell as eq. (11) 

𝑐𝑛
Time (𝑡) =

1

𝐾𝑛
∑𝑘=1
𝐾𝑛  𝑇𝑘,

𝑡   (11) 

where Kn is number of devices chosen for federated model 

aggregation by n-th UAV server. Additionally, definition of 

the learning accuracy loss is given by eq. (12) 

𝑐𝑛
L𝑒𝑠(𝑡) =

1

|𝒟𝑛|
∑𝑘∈𝒦𝑛

 ∑𝑖∈𝐷𝑘
 𝑓(𝐰𝑛𝑖𝐬𝑘,𝑖 , 𝑧𝑘,𝑖), ∀𝑛 

 (12) 

To increase speed and significance of learning, it is 

preferable to choose a subset of devices with high 

processing capacity, locate UAVs in areas with the best 

channel quality, and manage subchannel as well as power 

resources. Consequently, optimization issue may be 

expressed as eq. (13). 

minΘ
𝑛,𝑝,𝒳,𝑝𝑛

D
 (𝜆𝑐𝑛

Time (𝑡) + (1 − 𝜆)𝑐𝑛
Los(𝑡)), ∀𝑛 

s.t. a) 𝜌𝑛,𝑘 ∈ {0,1}, 𝜒𝑛,𝑘,𝑚 ∈ {0,1}, ∀𝑘,𝑚, 

b) ∑𝑛∈𝒩  𝜌𝑛,𝑘 ≤ 1, ∀𝑘, 

c) ∑𝑘∈𝐾  ∑𝑚∈𝑀  𝜒𝑛,𝑘,𝑚 ≤ 𝑀,    (13) 

d) 0 ≤ 𝑃𝑛
D ≤ 𝑃𝑛

max. 

e) 0 ≤ 𝑓𝑘 ≤ 𝑓𝑘
max, ∀𝑘; 

Thus, according to the formulas ∀w, w0 ∈ R d, Fn(·) is L-

smooth and -strongly convexin eq. (14). 
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𝐹𝑤(𝑤) ≤ 𝐹𝑛(𝑤
′) + ⟨∇𝐹𝑛(𝑤

′), 𝑤 − 𝑤′⟩ +
𝐿

2
∥𝑤 − 𝑤′∥2 

𝐹𝑤(𝑤) ≥ 𝐹𝑤(𝑤
′) + ⟨∇𝐹𝑛(𝑤

′),𝑤 − 𝑤′⟩ +
𝛽

2
∥𝑤 − 𝑤′∥2

  (14) 

In this essay, the terms hw, w0 I and kk refer to the 

Euclidean norm and the inner product of the vectors w and 

w 0, respectively.We point out that Assumption 1's strong 

convexity and smoothness may be observed in a variety of 

applications, including the l2-regularized logistic regression 

𝑓𝑖(𝑤) =
1

2
(⟨𝑥𝑖 , 𝑤⟩ − 𝑦𝑖)

2 +
𝛽

2
∥ 𝑤 ∥2, 𝑦 ∈ ℝand the l2-

regularized linear regression models with the formulas 

𝑓𝑖(𝑤) = log⁡(1 + exp⁡(−𝑦𝑖(𝑥𝑖 , 𝑤})) +
3

2
∥ 𝑤 ∥2, 𝑦𝑖 ∈{−1, 

1}.The Hessian matrix's condition number ρ := L β, is also 

denoted. The edge server aggregates local method w t n and 

gradient ∇𝐹𝑛(𝑤𝑛
𝑡), ∀n after receiving them by eq. (15). 

𝑤𝑡: = ∑𝑛=1
𝑁  𝑝𝑛𝑤𝑛

𝑡  

∇𝐹𝑡: = ∑𝑛=1
𝑁  𝑝𝑛∇𝐹𝑛(𝑤𝑛

𝑡)    (16) 

in order for contributing UEs to minimise their surrogate J 

t+1 n in following global round t+1, broadcast w t and 

∇F¯tto all UEs by eq. (17). 

𝐹(𝑤𝑡) − 𝐹(𝑤∗) ≤ 𝜖, ∀𝑡 ≥ 𝐾9𝑡  (17) 

where w ∗is the ideal response to (1). We'll then give the 

FEDL convergence analysis after that. Due to the fact that 

𝐽𝑛
𝑡(𝑤) and Fn(·) share same Hessian matrix, we can 

observe that both of them are β -strongly convex and L-

smooth. We can utilise GD to solve (18) using these J t n 

(w) attributes. 

𝑧𝑘+1 = 𝑧𝑘 − ℎ𝑘∇𝐽𝑛
𝑡(𝑧𝑘)   (18) 

where hk is a predetermined learning rate at iteration k and 

zk is local model update, it is demonstrated to produce a 

convergent sequence (zk)k≥0 fulfilling a linear convergence 

rate as eq. (19). 

𝐽𝑛
𝑡(𝑧𝑘) − 𝐽𝑛

𝑡 (𝑧∗) ≤ 𝑐(1 − 𝛾)𝑘(𝐽𝑛
𝑡(𝑧0) − 𝐽𝑛

𝑡 (𝑧∗)) 

 (19) 

where c and (0, 1) are constants that rely on and z ∗is the 

local problem's ideal solution (2). The best course of action 

for each m ∈ M ⊆ N taking part in the game (i.exm∈ (0, 

dn)) Proof, According to Eqn. (19), for any 𝑚 ∈ ℳ, we 

have 

∑  𝑀
𝑛=1 𝑥𝑛

∗ = √
𝜏 ∑ 𝑠𝑀(𝑚)𝑥𝑚

∗

∑  ∗
𝑚  +𝑐𝑚

∗𝑚 .  (19) 

By setting 𝜀 = ∑𝑛=1
𝑀  𝑥𝑚

∗ , we can derive that, Therefore by 

eq. (20), 

𝜉 = 𝑀𝜉 −
𝜉2∑  𝑀

𝑛=1  (𝑐𝑚
0𝑚+𝑐𝑛𝑚𝑝)

𝜏
.  (20) 

Based on Eqn. (21), we have 

𝜉 =
(𝑀𝑓−1)𝜏

∑  𝑀
𝑛=1  (𝑐𝑚

𝑚+𝑐𝑛
𝑐𝑚𝑝

)
   (21) 

Algorithm of MC-FLAN: 

1. The cloud server initializes 𝑤𝑐𝑠 

2. Each system k initializes 𝑤𝑘 and 𝑤𝑘
𝑝𝑟𝑒𝑣

⁡𝑎𝑠𝑤𝑐𝑠 

3. For 𝑡𝜖{0,1, … }𝑑𝑜 

4. For each system k do 

5. Observe 𝑠𝑘
𝑡  and translate it as 𝑠𝑘

−𝑡 ← 𝑑𝑘
𝑠(𝑠𝑘

𝑡) 

6. choose 𝑎𝑘
−𝑡 ← 𝜋(𝑠𝑘

−𝑡; 𝑤𝑘) and translate it as 𝑎𝑘
−𝑡 ←

𝑑𝑘
𝑠(𝑎𝑘

𝑡 ) 

7. do action 𝑎𝑘
𝑡  and observe 𝑢𝑘

𝑡  and 𝑠𝑘
𝑡+1 

8. translate 𝑠𝑘
𝑡+1 as 𝑠𝑘

−𝑡+1 ← 𝑑𝑘
𝑠𝑠𝑘

𝑡+1 

9. store experience (𝑠𝑘
−𝑡 , 𝑎𝑘

−𝑡 , 𝑢𝑘
𝑡 , 𝑠𝑘

−𝑡+1) 

10. update 𝑤𝑘 using its experiences by a DQN 

algorithm 

11. end for  

12. if mod (t,𝑇𝐹𝐿)==0 then 

13. all systems calculate their local gradients 𝑓𝑘’s from 

their previous DNN 𝑤𝑘
𝑝𝑟𝑒𝑣

 to the current DNN 𝑤𝑘 

14. The cloud server updates 𝑤𝑐𝑠 by aggregating the 

local gradients from all systems 

15. All system replace their DNNs 𝑤𝑘’s and 𝑤𝑘
𝑝𝑟𝑒𝑣

 to 

𝑤𝑐𝑠 

16. End if 

17. End for 

 

Trajectory based deterministic reinforcement 

collaborative routing protocol: 

Suppose vm = [xm, ym] The 2D coordinates of UE m are T, 

m ∈ M, where xm and ym are UE m's respective 

coordinates.Following equation describes the horizontal 

separation between UE m as well as UAV I at time t by eq. 

(23): 

𝐿𝑖,𝑚(𝑡) = √[𝑥𝑖(𝑡) − 𝑥𝑚]
2 + [𝑦(𝑡) − 𝑦𝑚]

2.  (23) 

Distance between UAV I and UE m at time t is therefore 

determined to be as eq. (24) 

𝑑𝑖,𝑚(𝑡) = √𝑧𝑖
2(𝑡) + 𝑙𝑖,𝑚(𝑡)

2  (24) 

Every UAV may have a maximum flight distance based 

onimperfect flying speed of UAVs, which is specified as by 

eq. (25) 

∥∥𝑣𝑖(𝑡 + 1) − 𝑣(𝑡)∥∥ ≤ 𝑉𝐻𝑇 

∥∥𝑧𝑖(𝑡 + 1) − 𝑧(𝑡)∥∥ ≤ 𝑉𝐴𝑇  (25) 

where VH and VA stand for respective horizontal as well as 

vertical flight speeds of UAVs throughout every time slot T. 

In order to prevent UAVs from colliding, collision avoiding 

restrictions of UAVs are considered, which are provided by 

eq. (26) 
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|𝑣𝑖(𝑡) − 𝑣𝑗(𝑡)|
2
+ ∥∥𝑧𝑖(𝑡) − 𝑧𝑗(𝑡)∥∥

2
≥ 𝐷min 

2 , ∀𝑖, 𝑗 ∈ 𝒦, 𝑖 ≠

𝑗  (26) 

where Dmin represents the shortest distance between any 

two UAVs. Keep in mind that time frame T needs to be brief 

sufficient to treat channel as a rough constant.The time slot 

T then needs to adhere to the following restriction in order 

to prevent an accidental collision between two UAVs eq. 

(27): 

𝑇 ≤ 𝑇max =
𝐷min

2√𝑉𝐿
2+𝑉𝐴

2
  (27) 

where Tmax is a time slot's maximum value. Maximum 

vertical distance L v max and horizontal distance L h max is 

represented as eq. (28), 

𝐿max
ℎ = 𝑉𝐻𝑇max 

𝐿max
∗ = 𝑉𝐴𝑇max  (28) 

Next, taking into account whether the radio signals sent by 

UAVs are LoS or NLoS. Likelihood that UE m and UAV I 

will establish a LoS connection at time t is given by eq. (29) 

𝑃𝑖,𝑚
𝐿𝑎𝑠(𝑡) =

1

1+𝑎exp⁡(−𝑏(
1𝑁∣

𝜋
tan−1⁡(𝛼𝑖,𝑚(𝑡))−𝑎)

  (29) 

where αi,m(t) represents angle of UAV I and a and b are 

environment-related factors. Likelihood of the NLoS can 

therefore be calculated as eq. (30) 

𝑃𝑖,𝑚
𝑁𝐿𝑎𝑠(𝑡) = 1 − 𝑃𝑖,𝑚

𝑙𝐿𝑆(𝑡)  (30) 

Path loss methods of LoS and NLoS in dB is given as 

follows at time t by eq. (31). 

𝐿𝑖,𝑚
𝐿𝑎𝑆(𝑡) = 20log⁡ (

4𝜋𝑓𝑐𝑑𝑖,𝑚(𝑡)

𝑐
) + 𝜂𝐿𝐿𝑜𝑆 

𝐿𝑖,𝑚
𝑁𝐿𝐿𝑆(𝑡) = 20log⁡ (

4𝜋𝑓𝑐𝑑𝑖,𝑚(𝑡)

𝑐
) + 𝜂𝑁𝐿𝑜𝑆  (31) 

where fc stands for the carrier frequency, ηLoS and ηNLoS, 

respectively, are mean additional losses. Next, it is possible 

to determine the estimated mean path loss1 as eq. (32) 

𝐿𝑖,𝑚(𝑡) = 𝐿𝑖,𝑚
𝐿𝐿𝑆(𝑡) × 𝑃𝑖,𝑚

𝐿sin(𝑡) + 𝐿𝑖,𝑚
NLos(𝑡) × 𝑃𝑖,𝑚

NLos(𝑡) 

 (32) 

Assume that each UE receives an equal share of the 

bandwidth B. The bandwidth of UE m at hotspots I can 

therefore be calculated using the information provided by 

eq. (33) 

𝐵𝑖,𝑚 = 𝐵/𝑀(𝑖)  (33) 

Additionally, every UAV’s transmission power is 

distributed evenly to all Ues in hotspot I, which is denoted 

by the following eq. (34): 

𝑝𝑖,𝑚(𝑡) = 𝑝𝑖(𝑡)/𝑀(𝑖)  (34) 

where Pmax is highest transmission power and UAV I’s 

transmission power is 0 ≤ pi(t) ≤ Pmax. Next, the received 

SINR of UE m from UAV I is given by depending on 

transmission power of UAV pi(t) by eq. (35). 

𝜑𝑖,𝑚(𝑡) =
𝑝𝑖,𝑚(𝑡)𝑔𝑖,𝑚(𝑡)

𝐵𝑖,𝑚𝑁0+∑𝑗≠𝑖  𝑝𝑗,𝑚(𝑡)𝑔𝑗,𝑚(𝑡)
, ∀𝑖, 𝑗 ∈ 𝒦 

 (35) 

Rate of UE m served by UAV I is then equal to eq. (36) 

𝜙𝑖,𝑚(𝑡) = 𝐵𝑖,𝑚log2⁡(1 + 𝜑𝑖,𝑚(𝑡))  (36) 

Total rate of UAV iis given as eq. (37) 

𝜙𝑖(𝑡) = ∑𝑚=1
𝑀(𝑖)

 𝜙𝑖,𝑚(𝑡) = ∑𝑚=1
𝑀(𝑖)

 𝐵𝑖,𝑚log2⁡(1 + 𝜑𝑖,𝑚(𝑡))

  (37) 

The utility of a UAV is then defined as difference between 

its profit and its transmission cost, or, in other words by eq. 

(38), 

𝑤𝑖(𝑡) = 𝜌𝑖𝜙𝑖(𝑡) − 𝜆𝑝𝑝𝑖(𝑡) = ∑𝑚=1
𝑀(𝜌)

 [𝜌𝑖𝜙𝑖,𝑚(𝑡) −

𝜆𝑝𝑝𝑖,𝑚(𝑡)]  (38) 

where λp is the cost of the transmit power used by the UAV 

and ρi is the profit per rate.A ground-based user requesting 

task routing to dN under coverage of sN (source) initiates 

the routing path discovery (destination).Path discovery is 

finished, and sN also selects the routing path.The path 

discovery as well as selection operations are once more 

started by new source after altering sN.Since the UAVs in 

our example use a Wi-Fi network, physical time for the 

exchange of path discovery data is in ms, making it reliant 

on the wireless radio's available bandwidth. 

Each UAV serves as a node in undirected graph G that we 

take to be the created network.Thus, in this undirected 

graph, an edge only exists between two nodes if and only if 

the UAVs that make up those nodes in G are direct one-hop 

neighbours in grid.The group of nodes (UAVs) is designated 

as V when every node contains an adjacency list that 

identifies its edges.Final set of pathways connecting sN and 

dN is designated by the symbol pL. Algorithm 2 is used to 

determine all paths between sN and dN. It is based on a 

network flooding-based methodology.Every UAV adds its 

method information to packet when it approaches dN and 

then broadcasts it to all of its other neighbours.pL = p1, p2, 

p3, p4, ,px, Unlike conventional network discovery 

methods, which take hop-based metrics into account, every 

node in our suggested methodology updates all of its 

relevant data, including its current energy level (Ei(t), task 

completion time (T), and hop distance (cN) from sN.Each 

path's collected data from all the UAVs is updated at 

sN.Because a node can be visited more than once when 

using this flooding-based method to find all potential routes 

between sN and dN, the number of identified paths can 

become prohibitively large, especially for larger grid sizes N 

×N. 
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Collaborative Path discovery algorithm: 

Inputs: (𝐺, 𝑉, 𝑠𝑁, 𝑑𝑁) 

Output: (𝑝𝐿) 

1: procedure GETPATHS (𝐺, 𝑉, 𝑠𝑁, 𝑑𝑁) 

2: Initialize vis to {} 

4: Set vis[node]toFalse 

5: end for 

6: Start𝑝𝐿 to {} 

7: Start path to {} 

8: Start current Node to SN 

9: Call pathUtil (𝐺, 𝑠𝑁, 𝑑𝑁, 𝑝𝐿, path, current Node, vis) 

10: Call Path Management Score 

return 𝑝𝐿 

11: end process 

 

Based on creation of an energy-based path score function, 

best route between sN and dN is chosen (t).The score 

function takes into account the task lists Ji(t) of every UAV 

in the chosen path, number of UAVs in path n, and residual 

energy REi(t) of every UAV in path under review.Goal of 

choosing a less score communication path between source as 

well as destination UAVs is to increase communication path 

lifetime, maximise the collective residual energies of UAVs 

in the chosen path, and minimise processing costs associated 

with finding new paths in event that a UAV member on 

chosen path is lost due to energy depletion. 

A UAV node's energy, Ei(t), is made up of the combined 

energy needed to execute assigned tasks, Ei(J), and energy 

needed to keep UAV's controls in good working order, 

Ei(Nx) by eq. (39). 

𝐸𝑖(𝑡) = 𝐸𝑖(𝐽) + 𝐸(𝑁𝑥)  (39) 

The designed Up(t) must ensure that none of the UAVs 

along the path perish while a transmission is in progress. We 

define the routing path selection score function as a function 

of REi(t), number of UAVs in path n, and Ji for a path p = 1, 

2, 3,..., n. (t).The score function is kept directly proportional 

to residual energy because it is what we want to 

optimise.However, n or Ji(t) of the path increases tend to 

decrease REi(t), therefore it is evaluated to be inversely 

proportional to developed score function.The reduction of 

Up is achieved by accommodating a continuous increase in 

all three of these factors (t).To designate a point as a local 

minima, place t3 T between t1 and t2, so that t1 t3 t2. 

Assuming that t1 > t2 results in t3 = t1 + (1 )t2 (from 

equation 5). The scoring function for t1, t2, and t3 for 1 I n 

is expressed as tm for m = 1, 2, and 3 such that by eq. (40) 

𝑈𝑝(𝑡𝑚) = {

∑𝑖=1
𝑚  𝑅𝐸𝑢(𝑡𝑚)

𝑛2×(1+∑𝑖=1
𝑛  𝐽𝑖(𝑡𝑚))

, ∀𝑖𝐸𝑖(𝑡𝑚) > 𝑇 × 𝑒𝑑

0, ∃𝑖𝐸𝑖(𝑡𝑚) ≤ 𝑇 × 𝑒𝑑
  (40) 

where REi(tj ) ≤ 0 ⇒ Up(tj ) = 0, then ∀m ∈ T, m ≥ j by eq. 

(41), 

𝑅𝐸𝑖(𝑡𝑚) = 0 ⇒ 𝑈𝑝(𝑡𝑚) = 0  (41) 

To designate a point as a local minima, place t3 T between 

t1 and t2, so that t1 t3 t2. Assuming that t1 > t2 results in t3 

= t1 + (1 )t2 (from equation 5). The scoring function for t1, 

t2, and t3 for 1 I n is expressed as tm for m = 1, 2, and 3 

such that by eq. (42) 

𝜆 (∑1
𝑛  (𝐸𝑖(𝑡1) − (𝑇 × 𝑒𝑑)) − ∑1

𝑛  (𝐸𝑖(𝑡2) − (𝑇 × 𝑒𝑑))) + 

∑1
𝑛  (𝐸𝑖(𝑡2) − (𝑇 × 𝜖𝑑)) ≥ ∑1

𝑛  (𝐸𝑖(𝑡3) − (𝑇 × 𝜖𝑑)) 

 (42) 

As a result, relation in equation 5 is satisfied since the total 

residual energies at time t1 will always be greater than total 

residual energies at any point in time after t1.Equation 5 can 

be stated in relation to equation 3 as follows for the 

cumulative task list T J(t) and sum of residual energy T E(t) 

along a path by eq. (43): 

𝑇𝐸𝑖(𝑡2)

𝑛2 × (1 + 𝑇𝐽𝑖(𝑡2))
+ 𝜆 (

𝑇𝐸𝑖(𝑡1)

𝑛2 × (1 + 𝑇𝐽𝑖(𝑡1))
− 

𝑇𝐸𝑖(𝑡2)

𝑛2×(1+𝑇𝐽𝑖(𝑡2))
) ≥

𝑇𝐸𝑖(𝑡3)

𝑛2×(1+𝑇𝐽𝑖(𝑡3))
   (43) 

The relationship in equation 5 is satisfied by this. The 

decrease in T E(t) on right hand side of equation 9 is also 

much greater than the total fall in T J(t), as the job list 

decreases by one unit with each task completed, and the 

energy decreases by multiple units, resulting in the change 

∆REi> ∆JLi .Since the convexity of Up(t) is satisfied under 

all circumstances for a given t1, t2, and λ all local minima of 

this function must be global minima of method. Defined 

score depends on t, and t is always less than zero.As a result, 

we demonstrate that U ′ exists at all t ∈ R +in order to 

demonstrate that U is differentiable at all t ∈ R +. If given an 

infinitesimally tiny interval ℎ, limℎ→0+  (𝑈𝑝(𝑡 + ℎ) −

𝑈𝑝(𝑡))ℎ
−1 exists, then U is differentiable at t. Using 

formula (44) 

𝑈′(𝑡) = limℎ→0+  
𝑈𝑝(𝑡+ℎ)−𝑈𝑝(𝑡)

ℎ
=

1

𝑛2(1+∑𝑖=1
𝑛  𝐽𝑖(𝑡))

′ 

 (44) 

Consequently, we may write this relationship as REi(h) = h, 

∀ h → 0 +. The expression REi(t+h) can also be written as 

REi(t)+REi (h). You may rewrite equation 10 to read as by 

eq. (45), 
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𝑈′(𝑡) = limℎ→0+  
𝑈𝑝(𝑡+ℎ)−𝑈𝑝(𝑡)

ℎ
=

1

𝑛2(1+∑𝑖=1
𝑛  𝐽𝑖(𝑡))

 

 (45) 

We may say that scoring function U is differentiable at all t 

∈ R +. using equation 45. 

 

4. Performance analysis: 

In this section, we conduct comprehensive numerical 

experiments to verify efficacy of our suggested method.On a 

desktop with an Intel Core i7-4790 3.60 GHz CPU and 16 

GB RAM, all experiments are carried out in MATLAB 

R2018a using CVX.We take into consideration a MEC 

system with a UAV that has 4 ground ECs situated at every 

vertex and 10 ground MUs scattered around a 2-D region of 

1000 × 1000 m2.The UAV is deployed as well as controlled 

to aid in supply of MEC services, and our suggested 

technique can be used to determine the UAV's ideal 3-D 

location. Table 1 displays the primary simulation variables. 

Table 1: Network environment parameters 

Parameters Value 

Channel bandwidth B 1MHz 

Minimum height of UAVs 100m 

Maximum transmit power of 

UAVs 
30dBm 

Maximum height of UAVs 300m 

Downlink carrier frequency fc 1950 MHz 

Noise power density -174 dBm 

Minimum QoS requirement 2dB 

Mean excessive pathloss for LoS 1dB 

Punishment coefficient of UEs 120 

coverage 

Punishment of UAVs collision 20 

Unit price per transmit power 2 

Mean excessive pathloss for 

NLoS 
20dB 

Elevation angle 42.44 

Level flight speed 20m/s 

Vertical flight speed 5m/s 

Minimum distance of UAVs 50m 

 

The combined three-dimensional trajectory and power 

allocation technique is depicted in Figure 4.Considered are 

the performances of the suggested (blue star) and existing 

(red star) approaches.One such combined strategy is shown 

in Figures 4(a) and 4(b), respectively, for single-UAV and 

two-UAV scenarios.Each UAV begins each episode from 

same location to offer UEs wireless service.In two instances, 

two techniques show how UAV should fly in the same 

general direction to cover all UEs.Additionally, utilising two 

optimization techniques, two UAVs in the two-UAV 

scenario may cover all UEs in every hotpot without 

overlapping.Additionally, current technique takes 

interference into account in addition to spectrum efficiency, 

unlike the suggested strategy with constant power 

allocation.Thus, the proposed technique consistently yields 

better network utility than the proposed method. 

 

 

  
Figure 4. Positions of UEs and UAVs with trajectory design and power allocation strategy 

 

Table-2 Comparative analysis between proposed and existing technique 

Cases Techniques 
Smoothing training 

reward 

Computational 

complexity 
Throughput Delay 

Network 

optimization 

Number 

of UE 

MEC_MU 77 65 88 69 71 

DRL_CN 81 61 92 65 73 

5G_UAV_RA_FLAN_TRP 85 58 95 63 75 

Number 

of UAV 

MEC_MU 83 55 91 61 79 

DRL_CN 86 43 93 58 81 

5G_UAV_RA_FLAN_TRP 89 42 95 55 83 
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The above table-1 shows comparative analysis between 

proposed and existing technique based on number of UAV 

and number of UE. Here the parameters analysed are 

smoothing training reward, computational complexity, 

throughput, delay, network optimization.The amount of 

computing power required for specific tasks is the subject of 

the computer science notion of computational 

complexity.The computational complexity of some 

algorithms can be determined by the amount of time the 

CPU takes to perform them, whereas the difficulty of other 

methods are expressed as O(x), where x is number of nested 

loops in each run.It describes time it takes for a piece of data 

to go from one communication endpoint to another across 

the network.It is often expressed in fractions or multiples of 

seconds. A variety of networks and devices that are at or 

close to the user are referred to as edge computing, an 

emerging computing paradigm.Edge is about processing 

data more quickly and in larger volume near to the point of 

generation, providing action-driven solutions in real 

time.Technology called network optimization is used to 

enhance network performance in a certain setting.It is 

regarded as being a crucial element of efficient information 

systems management. 

 

 
(a) smoothing training reward 

 
(b) computational complexity 

 
(c) throughput 

 
(d) delay 

 
(e) network optimization 

Figure- 5 comparative analysis between proposed and existing technique based on number of UE (a) smoothing training 

reward,(b) computational complexity,(c) throughput,(d) delay,(e) network optimization 

 

The above figure-5 (a)- (e) shows comparative analysis 

between proposed and existing technique. here the proposed 

technique has been analysed based on number of UE. The 

techniques compared are MEC_MU and DRL_CN with 

proposed 5G_UAV_RA_FLAN_TRP. The proposed 

technique obtained smoothing training reward of 85%, 

computational complexity of 58%, throughput of 95%, delay 

of 63% and network optimization of 75%; while existing 
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MEC_MU attained smoothing training reward of 77%, 

computational complexity of 65%, throughput of 88%, delay 

of 69% and network optimization of 71%and DRL_CN 

attained smoothing training reward of 81%, computational 

complexity of 61%, throughput of 92%, delay of 65% and 

network optimization of 73%.  

 
(a) smoothing training reward 

 
(b) computational complexity 

 
(c) throughput 

 
(d) delay 

 
(e) network optimization 

Figure- 6 comparative analysis between proposed and existing technique based on number of UAV (a) smoothing training 

reward,(b) computational complexity,(c) throughput,(d) delay,(e) network optimization 

 

From above figure-6 (a)- (e) shows comparative analysis of 

proposed technique with existing technique based on 

number of UAV in the network. The proposed technique 

attainedsmoothing training reward of 89%, computational 

complexity of 42%, throughput of 95%, delay of 55% and 

network optimization of 83%; while the existing technique 

MEC_MU attained smoothing training reward of 83%, 

computational complexity of 55%, throughput of 91%, delay 

of 61% and network optimization of 79%and DRL_CN 

attained smoothing training reward of 86%, computational 

complexity of 43%, throughput of 93%, delay of 58% and 

network optimization of 81%. 

 

 

5. Conclusion: 

The proposed framework of this research gives novel 

technique inin UAV based edge computing resource 

allocation and routing by machine learning technique. the 

aim here to develop UAV assisted edge computing resource 

allocation has been carried out using Monte Carlo federated 

learning based access network. Here routing is carried out 

using trajectory based deterministic reinforcement 

collaborative routing protocol.The experimental analysis has 

been carried out based on number of UAV and number of 

UE in terms of smoothing training reward, computational 

complexity, throughput, delay, network optimization. The 

proposed technique attainedsmoothing training reward of 

89%, computational complexity of 42%, throughput of 95%, 
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delay of 55% and network optimization of 83% based 

onnumber of UE and based on number of UAVproposed 

technique attainedsmoothing training reward of 89%, 

computational complexity of 42%, throughput of 95%, delay 

of 55% and network optimization of 83%.  
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