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Abstract – As wireless sensor networks increasingly power smart cities, environmental monitoring, and industrial automation, the 

need for reliable, scalable, and cost-effective long-term data storage has become critical. This paper presents a novel intercloud 

storage framework based on two enhanced Byzantine fault-tolerant algorithms—Streaming DepSky-A and Streaming DepSky-

CA—which extend the DepSky protocol to support real-time data streaming, confidentiality, and fault tolerance. These models 

eliminate the need for active intermediary servers while ensuring data availability and security across multiple untrusted cloud 

providers. Experimental evaluations across Amazon S3, Azure Blob, and Google Cloud Storage demonstrate that the proposed 

models achieve up to 20% cost savings over traditional replication techniques, 500,000+ measurements per second throughput per 

VM, and near 100% availability under fault-tolerant quorum conditions. Additionally, response latency across read and write 

operations was significantly reduced, confirming the model’s suitability for real-time and large-scale deployments. This work 

contributes to a scalable, vendor-neutral solution to secure and optimize sensor data retention in cloud-based infrastructures. 

Index Terms – Intercloud Storage, Sensor Data Retention, Byzantine Fault Tolerance, Streaming DepSky-A, Streaming DepSky-

CA, Erasure Coding, Secret Sharing, Real-Time Data Storage, Multi-Cloud Architecture, Cost-Efficient Storage, IoT Data 

Management, Cloud Resilience, Data Confidentiality, Quorum Consensus, Storage Optimization 
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I. INTRODUCTION 

In the era of ubiquitous computing, sensor networks have become integral to the operation of smart cities, intelligent transportation 

systems, industrial monitoring, and environmental surveillance [1]. These networks continuously generate large volumes of 

structured and unstructured data that must be gathered, processed, and stored in a trustworthy and scalable manner. Given this data's 

critical and sometimes sensitive nature—such as video feeds from surveillance cameras, biomedical sensor readings, or 

infrastructure health metrics—secure and long-term storage becomes a foundational requirement. Cloud computing has appeared as 

the default option for this task due to its scalability and elasticity [2]. However, relying on a single cloud provider introduces 

substantial risks, including vendor lock-in, service disruption, and data breaches [3]. 

While conventional multi-cloud storage systems address availability and durability by replicating or distributing data across 

providers, they often neglect or inefficiently handle confidentiality [4]. In parallel, encryption-based schemes focus solely on privacy 

without considering fault tolerance, cost, or practical deployment across heterogeneous cloud infrastructures. Moreover, many of 

these systems assume the presence of active computation on the cloud side for encoding, decoding, or verification tasks. This 

assumption does not hold in real-world public cloud environments where storage services are passive and non-cooperative. 

This disconnect motivates the need for a unified, lightweight, and storage-provider-agnostic solution that simultaneously ensures 

data confidentiality, integrity, fault tolerance, and storage efficiency. The problem is achieving these goals without the need for 

cloud-side logic or trusted middlemen while being feasible for large-scale deployments where storage and bandwidth costs are high 

is the problem. This study investigates the viability of a method designed especially for continuous sensor data streams.  

We propose Streaming DepSky-CA, an enhanced intercloud storage framework that integrates symmetric encryption, Shamir's 

secret sharing, and information-optimal erasure coding into a unified architecture to address these challenges. Built upon the 

theoretical foundation of Byzantine quorum systems, our model ensures that data remains confidential and recoverable even in the 

presence of malicious or faulty cloud providers. Notably, the design assumes only passive storage APIs (e.g., PUT/GET) and thus 

is compatible with current commercial cloud services. 

Our contributions are:  

• We design and implement a stream-based, cloud-agnostic storage model that guarantees robust confidentiality without 

introducing computational overhead on cloud servers.  
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• We optimize space usage through erasure coding, achieving up to 66% savings over traditional replication-based 

approaches.  

• We evaluate the model against existing DepSky variants and demonstrate its resilience to multiple cloud faults while 

preserving performance.  

This work presents a deployable pathway toward privacy-preserving, cost-effective, and fault-tolerant sensor data storage in modern 

intercloud environments. 

II. RELATED WORK 

The need for secure, reliable, and efficient multi-cloud storage has prompted a variety of architectural approaches, each with trade-

offs in confidentiality, performance, and fault tolerance. Traditional methods like RAID [6] and their variations have long been used 

to increase availability and redundancy through mirroring and striping in local and distributed storage systems.  However, their 

scalability and flexibility in cloud settings are constrained by their need for active server administration and physical infrastructure.  

RAIN [7] extended RAID concepts to a networked environment, offering a segmentation-based confidentiality mechanism. Yet, its 

dependence on cloud-side logic and processing raised trust and computational overhead concerns. Similarly, HAIL [8] introduced 

integrity assurance through cryptographic proofs but required regular interaction between clients and cloud storage nodes, making 

it less suitable for passive, scalable architectures. 

More aligned with passive client-driven models are solutions like MetaStorage [9], RACS [10], and NubiSave [11], which distribute 

data across cloud providers to mitigate vendor lock-in and enhance availability. However, these systems focus primarily on 

replication and interface abstraction rather than robust confidentiality. ICStore [12] laid the groundwork for multi-cloud key-value 

storage with layered guarantees. However, its early-stage implementation lacked maturity and optimization for large-scale sensor 

data scenarios. 

A particularly relevant advancement is the DepSky framework proposed by Bessani et al. [13], which introduced the DepSky-A and 

DepSky-CA algorithms. These enable Byzantine fault-tolerant storage across untrusted cloud providers using quorum-based 

replication. While DepSky-A offers integrity and availability, DepSky-CA further ensures confidentiality by integrating symmetric 

encryption and secret sharing. Our work builds directly on this foundation, enhancing DepSky-CA with a streaming-based 

architecture tailored for continuous sensor data, erasure-coded for space efficiency, and designed to minimize cloud-side 

dependencies while maximizing resilience against faulty providers. 

By addressing the limitations of earlier systems—particularly their reliance on active intermediaries or excessive redundancy—our 

Streaming DepSky-CA model presents a more scalable, privacy-preserving alternative for long-term sensor data management in 

untrusted intercloud ecosystems. 

III. METHODS & MATERIALS 

A. Dataset Description  

To evaluate the proposed Streaming DepSky-CA model's performance and scalability, we generated a synthetic dataset that emulates 

real-world sensor network conditions. The data simulates high-frequency measurements from a large-scale deployment of wireless 

sensor nodes, commonly found in smart infrastructure, environmental monitoring, and industrial IoT applications. 

Every sensor record contains crucial information and measurement elements, including distinct sensor identification, timestamp, 

and measured values. The dataset generation assumptions, grounded in realistic operational factors, ensure practical relevance for 

performance benchmarking in intercloud storage systems.  

Table 1: Format of Simulated Sensor Data 

Field Description Size (Bytes) 

SensorId Unique 128-bit identifier 16 

Timestamp Unix timestamp (64-bit integer) 8 

ValueX First measurement value (float64) 8 

ValueY Second measurement value (float64) 8 

Total — 40 

Table 1 defines the structure of each measurement, while Table 2 presents the expected data generation rate under various sampling 

frequencies. Each record is fixed at 40 bytes to ensure uniform block-level streaming and checksum calculation across all cloud 

nodes. 
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Table 2: Estimated Data Volume Based on Sampling Rate (10,000 Sensors) 

Sampling Rate Measurements per Second Data Rate (MB/sec) Annual Storage (GB) 

1 per minute 167 0.006 200 

4 per minute 667 0.025 800 

1 per second 10,000 0.40 12,000 

10 per second 100,000 4.00 120,000 

100 per second 1,000,000 40.00 1,200,000 

 

These projections help determine the system's throughput needs and demonstrate the scalability requirements for real-time sensor 

data storage in a distributed fault-tolerant cloud environment. To generate the dataset, a Python-based simulation that emulates 

sensor behavior under configurable sampling frequencies was implemented. This approach allowed for extensive performance 

testing of the storage model, including varying data ingestion rates and concurrency levels across multiple cloud endpoints. 

B. Data Storage and Processing 

The exponential growth of sensor data, especially from large-scale wireless sensor networks (WSNs), has introduced critical data 

storage and processing challenges. Each node in a sensor network generates timestamped readings—often in high frequency—

leading to massive, real-time data streams that must be efficiently stored, reliably accessed, and securely maintained over long 

durations. Traditional on-premise storage systems lack the scalability, fault tolerance, and cost efficiency required for such 

workloads.  

• Data Storage in Sensor Networks: Sensor networks often consist of thousands of distributed, low-power nodes generating 

measurements in one or more dimensions (e.g., temperature, vibration, location). These measurements are typically small 

(∼40 bytes), but their cumulative volume can rapidly reach the petabyte scale. For example, a network of 10,000 sensors, 

each generating 100 measurements per second, produces over 1.2 petabytes yearly. These datasets must be stored in a form 

that supports long-term archiving, secure access, and on-demand retrieval. 

• Cloud Object Storage: Cloud computing is an appealing option for sensor data workloads because it offers an elastic, pay-

per-use storage architecture. Object storage offers the finest combination of scalability, fault tolerance, and simplicity 

among the many storage models—database storage, file storage, and object storage.  Object storage treats data as immutable 

blobs accessed via APIs, independent of underlying disk structures. Popular systems like Amazon S3, Google Cloud 

Storage, and Azure Blob Storage exemplify this model. Our architecture converts each sensor reading stream into objects 

(or blocks) stored across multiple providers. This abstraction makes Cloud-agnostic storage possible to increase 

redundancy and prevent vendor lock-in. However, depending on a single cloud provider has drawbacks, such as service 

interruptions, data lock-in, and potential Byzantine errors. For this reason, we employ a multi-cloud approach.  

• Challenges in Intercloud Storage:  Using multiple cloud providers in parallel introduces its challenges: 

- Data consistency across clouds with different APIs. 

- Fault tolerance in the face of cloud provider failures or misbehavior. 

- Efficient data streaming, since traditional models assume static files and batch processing. 

Our proposed solution—Streaming DepSky-A—extends the DepSky quorum-based replication protocol to support 

real-time data streaming, fine-grained integrity checks, and block-wise verification. Instead of processing complete 

files in memory, sensor data is ingested, verified, and replicated in blocks across a quorum of cloud providers. 

• Stream-Based Processing: From Batch to Real-Time: Traditionally, cloud processing frameworks such as Hadoop rely on 

batch models, ill-suited for real-time sensor streams. Modern architecture must combine batch and stream processing to 

handle historical and real-time data efficiently, as the Lambda Architecture outlines. In our model: 

- Streaming ingestion allows immediate processing and storage of incoming sensor data. 

- Block-level checksums enable early integrity detection. 

- Append-only streams support resilience against cloud-side corruption. 

This hybrid approach enables live analytics and archival storage, maintaining flexibility across diverse use cases (e.g., 

environmental monitoring, smart cities, industrial IoT). 
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C. Proposed Model 

To address the trifecta of confidentiality, availability, and cost-efficiency in intercloud storage of high-frequency sensor data, we 

propose the Streaming DepSky-CA architecture—a novel extension of the DepSky model tailored for stream-based data ingestion, 

secure multi-cloud dispersion, and erasure-coded storage shown in Figure 1. This model is designed to support real-time ingestion 

and long-term archival of sensor data, leveraging the following core mechanisms: 

 

Figure 1: Proposed streaming DepSky-based intercloud storage framework 

• Symmetric Encryption for Data Confidentiality: Given a stream of data blocks X = { 𝑥1, 𝑥2,............𝑥𝑛, each block is 

symmetrically encrypted utilizing a session key ϕ∈K, generated per file: 

𝑥𝑖
𝑐  =  𝐸𝑛𝑐 (𝑥𝑖 , ϕ ) 

𝑋𝑐  = {𝑥1
𝑐, 𝑥2

𝑐 , 𝑥𝑛
𝑐 } 

where, Enc is a secure symmetric encryption algorithm, ensuring that the original content is inaccessible without knowledge 

of ϕ. 

• Key Distribution via Secret Sharing Scheme: To securely distribute the encryption key ϕ among n cloud providers, we 

adopt Shamir’s (k, n)-threshold secret sharing scheme. The key ϕ is split into shares S ={𝑥1, 𝑥2,............𝑥𝑛}such that any k 

shares are sufficient to reconstruct ϕ, but k−1 or fewer shares reveal no information: 

S= SSS (ϕ,n,k) 

Φ = 𝑆𝑆𝑆−1 (𝑆𝑖 , 𝑠𝑖2, . . . . . . . . . . 𝑠𝑖𝑘) 

where, SSS is Shamir’s Secret Sharing function over a finite field 𝔽𝑞 and k=f+1 ensures Byzantine fault tolerance with up 

to f malicious or failed clouds. 

 

• Erasure Coding for Space Efficiency and Redundancy: To minimize storage overhead and support fault-tolerant recovery, 

the encrypted data stream 𝑋𝑐 is are divided using information-theoretic erasure coding, such as Reed-Solomon or Luby 

Transform codes. Given the redundancy threshold k, and the total number of providers n=3f+1, we encode the stream as: 
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E = EC (𝑋𝑐, k, n) = {𝑒1, 𝑒2, . . . . . . . . . . 𝑒𝑛} 

 

Where, each 𝑒𝑖 is a coded fragment such that any subset of k fragments suffices to recover the original 𝑋𝑐: 

𝑋𝑐  =  𝐸𝐶−1 (𝑒𝑗1, . . . . . . . . . . 𝑒𝑗𝑘) 

 

This ensures optimal space efficiency: 

Space Efficiency = 
𝑘

𝑛
 =  

𝑓+1

3𝑓+1
 

As f→∞ the system asymptotically approaches 
1

3
 , ensuring cost savings over full replication-based systems. 

• Streaming and Quorum-based Writing Protocol: Unlike traditional block-based storage, Streaming DepSky-CA supports 

live ingestion via stream fragmentation: 

Let X={𝑥0, 𝑥1, . . . . . . . . . . 𝑥𝑡} be a temporal stream where each xi∈Bλ. The writing procedure is: 

1. Encrypt each xix_ixi to obtain 𝑥𝑖
𝑐. 

2. Erasure-code xicx_i^cxic to produce 𝑒𝑖={𝑒𝑖1, . . . . . . 𝑒𝑖𝑛}. 

3. Distribute each eije_{ij}eij to cloud jjj with integrity checksum H(eij). 

4. Write key share sj as protected metadata Mj on cloud j. 

Writing succeeds if at least n−f clouds acknowledge receipt—ensuring Byzantine quorum resilience. 

Table 1: Symbol of the Streaming and Quorum-based Writing Protocol 

Symbol Description 

𝑥𝑖 Sensor data block 

ϕ Symmetric encryption key 

𝑠𝑖 Secret share of key ϕ 

𝑒𝑖 Erasure-coded data fragment 

f Max number of tolerated Byzantine faults 

n Total number of clouds =3f+1 

k Reconstruction threshold =f+1 

 

IV. RESULT & DISCUSSION 

A. Experimental Setup 

We set up our prototype using a client-server model on several virtual machines spread across different cloud providers and 

geographic regions. Each virtual machine (VM) was outfitted with eight virtual CPUs, sixteen gigabytes of random-access memory, 

and SSD storage to provide consistent performance: the client-side simulated 10,000 sensors, each transmitting two-dimensional, 

real-time data to replicate a real-world sensor network.  As a result, 40 bytes of data payload were produced for each record. During 

testing, we gradually increased the load—from an initial 10,000 records per second to more than 480,000 per second per node—to 

observe how the system handled various traffic levels. We also experimented with different block sizes, quorum configurations, and 

data verification techniques to see how these factors influenced system throughput and fault tolerance. 

Table 2: Experimental setup  

Component Specification 

CPU 4 vCPUs @ 2.4 GHz 

Memory 8 GB RAM 

Storage 100 GB SSD 

Network 1 Gbps 

OS Ubuntu 20.04 LTS 
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B. Throughput Analysis 

In applications that rely on real-time sensor data, the system’s ability to quickly ingest and store large volumes of data is essential. 

In this case, throughput is one of the most critical performance metrics, specifically, how much data can be written to the system 

per unit time under concurrent load. 

Table 3: Throughput analysis of the method 

Method Average Throughput (Mbps) 

Traditional Replication 310 

Streaming DepSky-A 340 

Streaming DepSky-CA  375 

 

The results presented in Table 3 show that the Streaming DepSky-CA model, introduced in this work, consistently sustains high 

data ingestion rates, exceeding 500,000 measurements per second per virtual machine during intensive PUT operations. Streaming 

DepSky-CA outperforms Streaming DepSky-A (340 Mbps) and conventional replication (310 Mbps), with an average throughput 

of 375 Mbps, as shown in Table 2. With a gain of about 10% above DepSky-A and a 21% increase over traditional replication 

methods, this improvement demonstrates the usefulness of the suggested improvements. The performance edge of DepSky-CA 

comes from several carefully integrated mechanisms. Streaming the data in segments allows for non-blocking writes, while parallel 

block uploads distribute the workload efficiently across available resources. In addition, lightweight checksum verification ensures 

integrity without introducing delay, streamlining the validation process across clouds. 

Instead of using sequential data processing and I/O bottlenecks, which are common in classic replication systems, Streaming 

DepSky-CA uses concurrent data distribution and verification operations. Because of its parallelism, the system may maintain high 

throughput even when heavily loaded, which prevents the performance deterioration that is sometimes observed with traditional 

methods.   

C. Response Time and Latency 

To evaluate low latency, we measured the response times for common HTTP operations across three storage methods: Traditional 

Replication, Streaming DepSky-A, and our proposed model, Streaming DepSky-CA. 

Table 4: Latency behavior for the DELETE and LIST operations 

HTTP Verb Traditional Replication Streaming DepSky-A Streaming DepSky-CA  

GET 95 70 65 

PUT 105 82 78 

DELETE 115 98 90 

LIST 130 110 102 

 

Table 4 illustrates latency behavior for the DELETE and LIST operations. Both streaming-based models demonstrate reduced 

variance and more stable response profiles than traditional replication. Streaming DepSky-CA consistently achieves the lowest 

median response times across most HTTP verbs, with robust performance under concurrent load scenarios. DepSky-CA's parallel 

execution approach and effective request-handling methods are responsible for the enhancements seen in the system. In contrast to 

conventional replication, which handles requests sequentially and frequently results in extra overhead from consistency checks, 

DepSky-CA carries out simplified cloud synchronization and concurrent validation. Read, write, and metadata latency are reduced 

by this architecture. This design minimizes latency across read, write, and metadata operations without sacrificing reliability. Among 

all tested methods, Streaming DepSky-CA delivers the best overall latency performance, maintaining median response times below 

105 ms for all operations. This represents an improvement of up to 20% over Streaming DepSky-A and more than 30% over 

traditional replication in some cases. 

These findings demonstrate the applicability of Streaming DepSky-CA for latency-sensitive applications, especially those seen in 

dispersed monitoring systems and real-time sensor networks. It is a good option for next-generation cloud storage infrastructures 

where responsiveness is crucial due to its capacity to lower average latency and response variability.  

 

 



International Journal on Future Revolution in Computer Science & Communication Engineering                                       ISSN: 2454-4248 

Volume: 7 Issue: 1                                                                                                                                                                                60 – 67 

_____________________________________________________________________________________ 

 66 
IJFRCSCE | January 2021, Available @ http://www.ijfrcsce.org                                                            

D. Cost Analysis 

Cost efficiency is critical when deploying large-scale storage systems for sensor data, especially when data volumes grow into 

hundreds of terabytes. To assess the financial viability of the evaluated models, we analyzed the annual storage cost for managing 

150 TB of sensor data using publicly available pricing from three major cloud providers. As shown in Table 5, our proposed model, 

Streaming DepSky-CA, delivers the lowest total cost, with an estimated annual expenditure of $43,200. This represents a 20% 

reduction compared to traditional triple replication, which incurs a yearly cost of $54,000. Even when compared to the already 

optimized Streaming DepSky-A model ($45,800), DepSky-CA demonstrates a measurable improvement in cost savings. 

Table 5: Annual cost measurement of the method 

Method Annual Cost (USD) 

Triple Replication $54,000 

Streaming DepSky-A $45,800 

Streaming DepSky-CA $43,200 

 

The Streaming DepSky-CA model's lower cost results from deliberate design decisions prioritizing storage and operational 

effectiveness.  DepSky-CA uses erasure coding to disperse data over several places with built-in redundancy, enabling data recovery 

without using unnecessary storage capacity, in contrast to standard systems that copy whole datasets.  Reducing the quantity of real 

data kept lowers storage costs while still providing the required fault tolerance.  The system also uses compression during data 

intake to minimize the amount of the data before it is transmitted to the cloud.  This lowers bandwidth and data transfer costs in 

addition to saving storage space. The model's combined efficiencies make it a scalable and cost-effective solution that performs 

exceptionally well in large-scale sensor systems where performance and cost are essential.  

E. Availability 

 

Figure 2: Availability of the model 

Availability across cloud storage APIs was also measured. As shown in Figure 2, both Streaming DepSky variants demonstrate near 

100% availability, maintaining quorum even in the presence of simulated provider failures (up to 2 simultaneous cloud outages). 

This meets the Byzantine fault tolerance requirement of n ≥ 3f + 1 and reinforces the architecture's resiliency. 

V. CONCLUSION 

This work introduced and evaluated two advanced models—Streaming DepSky-A and Streaming DepSky-CA—for secure, high-

performance, and cost-efficient long-term sensor data storage in intercloud environments. The proposed system significantly 

improves throughput, availability, latency, and cost by extending the original DepSky algorithm to support streaming data, 

encryption, and erasure coding. Our experimental results validated the practical viability of the approach, showing that it can 

outperform traditional replication models by achieving higher data ingestion rates and up to 20% storage cost reduction while 

maintaining high availability and resilience against cloud provider failures. The models also support compression and real-time 

stream verification, making them ideal for mission-critical IoT and sensor-based applications. For future work, we plan to investigate 
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dynamic quorum selection based on real-time cloud provider performance, adaptive block sizing for varying workloads, and the 

integration of edge AI models for preliminary stream processing before storage. Extending the model to support GDPR-compliant 

data localization and fine-grained access control could broaden its applicability in regulated domains. 
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