
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 548 – 552

548

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

VHDL Implementation of 128 bit Pipelined Blowfish Algorithm

Dakey Rahul Khanna
1

Student, M.Tech , VLSISD,Dept. of

ECE,

Swarnandhra College of Engg. &Tech.

Narsapur , A.P,India.

e-mail: rahulkhanna556@gmail.com

N.Srikanth
2

Associate Professor, Dept. of ECE,

Swarnandhra College of Engg. &Tech.

Narsapur , A.P,India.

e-mail: srikanth648@yahoo.co.in

Dr. B.Subrahmaneswara Rao
3

Professor, Dept. of ECE

Swarnandhra College of Engg. &Tech.

Narsapur , A.P,India.

e-mail: boyina_a@yahoo.com

Abstract–– Communication through public networks imposes threat to our sensitive data. Information security plays an important role in public

networking and wireless communication. In order to achieve the protection of information or private data in networking, Cryptography can be

used. It is the automated method in which security goals are accomplished. Cryptographic algorithm is a mathematical function used in

Encryption and Decryption process. Blowfish is a keyed symmetric Cryptographic algorithm. It is a very fast and useful scheme for Encryption

and Decryption. A key is the strongest point of any algorithm but it can become the weakest point if it is not secured. Our information can be

secured if it is encrypted by using multiple keys. Hence implementation of Blowfish algorithm is very much use. Usually blowfish in existing

method is 64 bit block cipher and Throughput depends on the size of the blocks applied. In this proposed paper, the blowfish algorithm is

designed for 128 bit block size and pipelining operation is carried to improve the speed and reduce the delay accordingly, and so that this

architecture improves the throughput of an encoder. The implementation results indicate that the proposed pipelined architecture shows 10% of

improvement in Throughput. VHDL Implementation of proposed architecture has done by using XILINX ISE 9.1.

Key words: Cryptography, blowfish, pipelined architectures.

__*****__

I. INTRODUCTION

Embedded devices are becoming more popular and

used in network communications. These devices are now used

commonly for storing data and exchange of data through

public networks. Wireless networking imposes threat to the

sensitive data. To protect sensitive data against threat

embedded devices are designed with inbuilt security features.

The sensitive data is encrypted before transmission so that

only authorized user can have access to such information.

Hardware implementation of encryption algorithm is helpful in

designing secured Embedded System.

Modern embedded systems need data security more

than ever before. It is now common to see portable electronic

devices of all sorts, ranging from cellular phones to military

radio systems and from inventory tracking systems to medical

record tablets. Devices like PDAs and cell phones store

personal e-mail and contact lists [1]. GPS receivers keep logs

of our movements and our automobiles record our driving

habits. User-friendly products are in demand which can be

reprogrammed during normal use and add new features as

firmware upgrades become available. The user expects that the

system should be protected from unauthorized access.

Embedded device manufacturers expect protection of

their systems from unauthorized duplication or reverse

engineering. Cryptography can be used to secure private data

and keep it private. Encrypted data transmission will protect

contact lists and personal e-mail from unauthorized or

unintended persons. Firmware upgrades can be encrypted so

that only intended user can use it and other devices are

prevented from using it without proper authentication. In

certain applications data security from tampering is mandatory

by law. The applications like electronic engine controllers are

required to be protected from tampering emission and

performance data. Devices used to store medical data and

utility meter like taxi, gas, electricity must be tamperproof.

Devices can be secured with passwords, identification

numbers, or tokens. The devices can be designed with better

security using cryptography.

II. RELATED WORK

It was concluded in [8] that AES is faster and more

efficient than other encryption algorithms. When the trans-

mission of data is considered there is insignificant difference

in performance of different symmetric key schemes (most of

the resources are consumed for data transmission rather than

computation). Even under the scenario of data transfer it

would be advisable to use AES scheme in case the encrypted

data is stored at the other end and decrypted multiple times.

A study in [9] is conducted for different popular

secret key algorithms such as DES, 3DES, AES, and Blowfish.

They were implemented, and their performance was compared

by encrypting input files of varying contents and sizes. The

algorithms were tested on two different hardware platforms, to

compare their performance. They had conducted it on two

different machines: P-II 266 MHz and P-4 2.4 GHz. The

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 548 – 552

549

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

results showed that Blowfish had a very good performance

compared to other algorithms. Also it showed that AES had a

better performance than 3DES and DES. It also shows that

3DES has almost 1/3 throughput of DES, or in other words it

needs 3 times than DES to process the same amount of data

[10].

A study in [11] provides evaluation of six of the most

common encryption algorithms namely: AES, DES, 3DES,

RC2, Blowfish, and RC6. A comparison has been conducted

for those encryption algorithms at different settings for each

algorithm such as different sizes of data blocks, different data

types, battery power consumption, different key size and

finally encryption/decryption speed. Several points can be

concluded from the Experimental results. Firstly; there is no

significant difference when the results are displayed either in

hexadecimal base encoding or in base 64 encoding. Secondly;

in the case of changing packet size, it was concluded that

Blowfish has better performance than other common

encryption algorithms used, followed by RC6. Thirdly; we

find that 3DES still has low performance compared to

algorithm DES. Fourthly; we find RC2, has disadvantage over

all other algorithms in terms of time consumption. Fifthly; we

find AES has better performance than RC2, DES, and 3DES.

In the case of audio and video files we found the result as the

same as in text and document. Finally, in the case of changing

key size, it can be seen that higher key size leads to clear

change in the battery and time consumption.

III. ALGORITHM

There are two parts to this algorithm; a part that handles the

expansion of the key and a part that handles the encryption of

the data.The first step in the algorithm is to break the original

key into a set of subkeys. Specifically, a key of no more than

448 bits is separated into 4168 bytes. There is a P-array and

four 32-bit S-boxes. The P-array contains 18 32-bit subkeys,

while each S-box contains 256 entries.

The following steps are used to calculate the subkeys:

 Initialize the P-array and S-boxes

 XOR P-array with the key bits. For example, P1 XOR

(first 32 bits of key), P2 XOR (second 32 bits of key),

 Use the above method to encrypt the all-zero string

 This new output is now P1 and P2

 Encrypt the new P1 and P2 with the modified

subkeys.

 This new output is now P3 and P4

 Repeat 521 times in order to calculate new subkeys

for the P-array and the four S-boxes

Blowfish has a 64-bit block size and a key length of

anywhere from 32 bits to 448 bits. It is a 16-round Feistel

cipher and uses large key-dependent S-boxes. It is similar in

structure to CAST-128, which uses fixed S-boxes. Here is the

visual representation of this encryption algorithm.

IV. PROPOSED DESIGN

There are software and hardware approaches to

implement cryptographic Blowfish algorithm. Hardware

implementation provides greater physical security and higher

speed as compared to software implementation. Because of the

increasing requirement to implement cryptographic algorithms

in fast rising high-speed network applications combined with

physical security, hardware implementation becomes essential.

Figure 1: Blowfish Algorithm Design Blocks

The encrypter is required to be designed as integrated

part of the system in order to attain superior performance.

Embedded system designs are constraint by space, memory

and time. Lookup tables are considered for S box and P array

implementations which will generate keys fast and

precomputed values can be retained for encryption and

decryption. The symmetric nature of Blowfish helps in

reutilizing hardware for encryption and decryption which

further reduces area requirement or space. Blowfish is feistel

network. This simplifies encryption and decryption realization

in hardware.

Input plain text is applied to the core Blowfish cipher

block. Input will be processed as block of 64 bits. Each 64 bit

data further bifurcated into two 32bit data, in order to apply to

the cipher block. While applying data to the feistel block

Padding will be done for framing data as multiple of 8 bits. Π

ROM will give initial key values to S Box. 32bit are divided

into four groups of 8 bit each. It acts as address for selecting

precomputed substitution values of S box. Permutation values

are computed using lookup table. Data obtained from four S-

boxes further underwent to Arithmetic operations to get 32bit

random data. The sub key of length 32 bit obtained from P

array elements which are XORed and given to F function.

Figure 2: Proposed Memory-based Method

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 548 – 552

550

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

The architecture of the proposed Blowfish consists of

a 128-bit block size and 64bit key size, whereby it comprises

two parallel blocks of 64-bit Blowfish algorithm that are

simultaneously executed. This design technique enables the

throughput of the Blowfish algorithm to be maximized. The

parallel blocks share the same S-box that is used for the F

function. As the implementation of the Blowfish design is

targeted to reduce the core size and timing delay, The

implementation for the blow fish using S-boxes can be

replaced with the proposed method uses a read-only memory

(ROM) that contains 1024 × 32-bit input data of addr. The

addr represents the data of four 32-bit S-boxes. The 32-bit

output data are read from the ROM. The proposed method can

also lessen the total of slices used by the Blowfish design. A

slice contains a set number of look-up tables (LUTs), FFs, and

multiplexers. Thus, less logic resources are used to perform

logic, arithmetic, and ROM functions that can lead to a faster

encryption/decryption process.

 This implementation of Hardware block can be

reused two times to perform 128bit operation by means of

selector and de-selector blocks aided to the above design. That

is the proposed implementation of the Blowfish algorithm. The

design can be further modified to a pipelined implementation

of blowfish algorithm for improved performance as shown in

the figure.

Figure 3: Block Diagram of improved throughput pipelined

blowfish Algorithm

 If we observe the feistel block implementation, which

is the building block, in hardware using VHDL the critical

path delay will be of the order of 21.618ns. The building block

comprised of logic for performing XOR operation between

key and data and feistel function using S-boxes.

Figure 4: Black box of building block of the Design

implementation.

Figure 5: internal implementation of building block.

As the single block to perform 64bit operation requires

21.618ns, to perform 128bit operation by reusing the block

for two times requires 43.236ns. Hence pipelining can be

introduced by inserting registers between every two building

blocks and make sure that the time lag between two clock ticks

must be at least 43.236ns. Hence the proposed improved

throughput pipelined blowfish Algorithm can work at the

application of maximum clock frequency of 23.128MHz.

V. RESULTS AND COMPARISONS

 64bit fixed block cipher implemented in standard

blowfish hardware architecture by make use of 4 S-boxes

whose entries are calculated from the key and are independent

of both data and key while executing. The RTL (Register

Transfer Level) diagram and Design summary of implemented

Blowfish Algorithm are as shown below. The hardware

description done using VHDL and the synthesis of the design

done for Vertex E FPGA.

Figure 6: Simulated Waveform Diagram of 64bit blowfish

Algorithm

 The black box of improved throughput

blowfish Algorithm is as shown below. It generates 128bit

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 548 – 552

551

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

cipher output from 64bit design by time sharing using select

input.

Figure 7: Black Box of area efficient blowfish Algorithm.

 The black box of implemented improved throughput

pipelined blowfish Algorithm is as shown below. Here the

select input makes the 64bit design to operate twice in order

produce 128bi output. The clock signal drives the registers

separating the combinational building block of blowfish

hardware architecture and triggers with approximate minimum

lapse of 50ns. The select signal trigger once between two

clock triggers. The clear signal clears all the registers

whenever asserted.

Figure 8: Black Box of Improved throughput pipelined

blowfish Algorithm.

The cipher result obtained from the plain data applied to the

implemented design for two inputs is as given below, showing

minimum devotion of 56 of128.

Plaintext:

00

00

0000000000000000000000000000

Ciphertext:

00010011110000010111011100110110001001000001011000

00101101010011000100111100000101110111001101100010

0100000101100000101101010011

Plaintext:

11

11

1111111111111111111111111111

Ciphertext:

01101111011000001101101001111110001110111011000001

00101111111011011011110110000011011010011111100011

1011101100000100101111111011

 Here by comparing result obtained from 64bit fixed

block size blowfish algorithms implemented using S-box

method and ROM for feistel network, we can conclude that the

ROM based design is optimised to produce less delay and

lesser equivalent gate count. The logic utilization for the both

implementations are almost same.

Figure 9: Comparison between 64bit blowfish algorithms

using S-box and ROM

Throughput is defined as the average rate of

successful message delivery over a communication channel.

Throughput is directed toward evaluating each architecture’s

characteristic and performance. Throughput is calculated as

Eq.1.

Latency is the encryption/decryption time that is calculated in

clock cycles. Latency should be as small as possible to achieve

a power-saving system. Furthermore, a long battery life is

necessary, particularly for mobile devices.

Figure 10: Comparison among implemented 128bit blowfish

algorithm implementations.

0
50000

100000
150000
200000
250000
300000
350000

Logic
utilization

Equvalent
Gate Count

Delay(ps)

S-box and ROM Designs

S-box Design ROM Design

0
100000
200000
300000
400000
500000
600000
700000

Logic
utilization

Equivalent
Gate Count

Critical
Delay(ps)

Area Delay
Product(ADP)

in um.ps

Comparisions among 128bit
implementations

basic parallel implementation

proposed area efficient implementation

Improved throughput pipelined

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 11 548 – 552

552

IJFRCSCE | November 2017, Available @ http://www.ijfrcsce.org

Figure 11: Throughput Comparison among implemented

128bit blowfish algorithms

From the comparison results shown above, the

proposed improved throughput method of implementation

shows off less requirement of LUTs (Look up Tables),

equivalent gates when compared to parallel implementation

method. The evaluation delay may be little higher due to

inclusion of selector and de-selector, but overall performance

metric ADP is lower for proposed design which is the index

for improved performance. The proposed design is further

modified to get improved throughput pipelined blowfish

architecture, which shows off extremely optimised

performance. Results in less logic utilisation, less delay and

lesser Area Delay Product for superior performance. Still it

seems to occupy more equivalent gate count than the proposed

design due to inclusion of Registers.

The performance metric throughput is seems to be

doubled for proposed implementation, due to parallel

implementation of hardware, whereas for pipelined

architecture throughput is n times, where n is the number of

pipeline stages. Overall performance of the proposed

improved throughput pipelined architecture is better compared

to others.

VI. CONCLUSION

Implemented 64bit fixed block size blowfish algorithm using

VHDL. Simulated for satisfactory result in MODELSIM and

synthesized in XILINX ISE simulator, also implemented

feistel network of blowfish algorithm with ROM and observed

the performance improvement. The implementation of 128bit

blowfish algorithm using proposed improved throughput

method, proposed area efficient method and proposed

improved throughput pipelined method is done and obtained

results shows that the proposed improved throughput pipelined

method poses superior performance. The implementation

results indicate that the proposed pipelined architecture shows

10% of improvement in Throughput.

REFERENCES

[1] Ravi, Srivaths, et al. "Security in embedded systems: Design

challenges." ACM Transactions on Embedded Computing

Systems (TECS) 3.3 (2004): 461-491.

[2] Arya, S. "An Implementation of Blowfish Algorithm Using

FPGA." International Journal of Engineering Research and

Technology. Vol. 2. No. 8 (August-2013). IJERT, 2013.

[3] Patel C.R., Gohil N.B., Shah V.“FPGA - Hardware Based

DES & Blowfish Symmetric Cipher Algorithms For

Encryption & Decryption Of Secured Wireless Data

Communication”, Journal of Information, Knowledge and

Research in Electronics and Communication Engineering,

2(2), 739–744. (2013).

[4] Dakate, Deepak Kumar, and Pawan Dubey. "Blowfish

encryption: A comparative analysis using VHDL."

International of Engineering and Advanced Technology

(IJEAT) 1.5 (2012): 177-179.

[5] W. Stalling, “Cryptography and Network Security Principles

and Practices”, Prentice Hall, 4th ed., 2005.

[6] A. Kahate, “Cryptography and Network Security”, Tata

McGraw Hill, 2nd ed., 2007.

[7] National Institute of Standards and Technology, Federal

Information Processing Standards Publication 46-3: Data

Encryption Standard, 1999.

[8] S. Hirani, Energy Consumption of Encryption Schemes in

Wireless Devices Thesis, University ofPittsburgh, Apr.

9,2003, Retrieved Oct. 1, 2008.

[9] A. Nadeem, \A performance comparison of data encryption

algorithms," IEEE Information and Communication

Technologies, pp. 84-89, 2006.

[10] Results of Comparing Tens of Encryption Algorithms Using

Di®erent Settings- Crypto++ Benchmark,RetrievedOct. 1,

2008. (http://www.eskimo.com/ weidai/benchmarks.html)

[11] DiaaSalamaAbdElminaam, et,al. “Evaluating The

Performance of SymmetricEncryption Algorithms”

International Journal of Network Security, Vol.10, No.3,

PP.213{219, May 2010.

0
20
40
60
80

100
120
140

basic parallel

implementatio

proposed area

efficient

implementation

Improved

throughput

pipelined

Throughput(Normalized)

