Some Sequences of Fuzzy Numbers Associated With a Modulus Function

Bipul Sarma
MC College, Barpeta, Assam, INDIA
E-mail:drbsar@yahoo.co.in.

Abstract

In this article we introduce fuzzy sequence space $m_{F}(f, \phi, p), 0<p<1$, defined by a modulus function. We study its different properties like solidity, symmetricity, completeness etc.

Keywords: Modulus function, solid space, symmetric space.
AMS Classification No. 40A05; 46A45.

I. Introduction

Let P_{s} denote the class of all subsets of N, the set of natural numbers, those do not contain more than s elements. Throughout $\left\{\phi_{n}\right\}$ represents a non-decreasing sequence of real numbers such that $n \phi_{n+1} \leq(n+1) \phi_{n}$, for all $n \in N$.

The class of these sequences $\left\{\phi_{n}\right\}$ is denoted by Φ.
The sequence space $m(\phi)$ introduced by Sargent [15] is defined as

$$
m(\phi)=\left\{\left(x_{k}\right) \in w: \sup _{s \geq 1, \sigma \in P_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|x_{k}\right|<\infty\right\},
$$

which becomes a Banach space, normed by

$$
\|x\|_{m(\phi)}=\sup _{s \geq 1, \sigma \in P_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left|x_{k}\right| .
$$

The notion of modulus function was introduced by Nakano [11]. Later on different sequence spaces were defined by using modulus function and their different properties were investigated by Ruckle [14], Maddox [8], Bilgin [4] and many others.

Let D denote the set of all closed and bounded intervals $X=\left[a_{1}, a_{2}\right]$ on R, the real line. For $X, Y \in D$ we define

$$
d(X, Y)=\max \left(\left|a_{1}-b_{1}\right|,\left|a_{2}-b_{2}\right|\right),
$$

where $X=\left[a_{1}, a_{2}\right]$ and $Y=\left[b_{1}, b_{2}\right]$. It is known that (D, d) is a complete metric space.
A fuzzy real number X is a fuzzy set on R, i.e. a mapping $X: R \rightarrow I(=[0,1])$ associating each real number t with its grade of membership $X(t)$.

A fuzzy real number X is called convex if $X(t) \geq X(s) \wedge X(r)=\min \{X(s), X(t)\}$, where $s<t<r$.

If there exists $t_{0} \in R$ such that $X\left(t_{0}\right)=1$, then the fuzzy real number X is called normal.

A fuzzy real number X is said to be upper-semi continuous if, for each $\varepsilon>0$, $X^{1}([0, a+\varepsilon))$, for all $a \in I$ is open in the usual topology of R.

The set of all upper-semi continuous, normal, convex fuzzy real numbers is denoted by $R(I)$ and throughout the article, by a fuzzy real number we mean that the number belongs to $R(I)$.

The α-level set $[X]^{\alpha}$ of the fuzzy real number X, for $0<\alpha \leq 1$, defined as $\quad[X]^{\alpha}=\{t \in R: X(t) \geq \alpha\}$. If α $=0$, then it is the closure of the strong 0 -cut.

The set R of all real numbers can be embedded in $R(I)$. For $r \in R, \bar{r} \in R(I)$ is defined by

$$
\bar{r}(t)= \begin{cases}1, & \text { for } t=r, \\ 0, & \text { for } t \neq r\end{cases}
$$

The absolute value, $|X|$ of $X \in R(I)$ is defined by (see for instance Kaleva and

Seikkala [6])

$$
\begin{aligned}
|X|(t) & =\max \{X(t), X(-t)\}, & \text { if } t \geq 0, \\
& =0, & \text { if } t<0 .
\end{aligned}
$$

A fuzzy real number X is called non-negative if $X(t)=0$, for all $t<0$. The set of all non-negative fuzzy real numbers is denoted by $R^{*}(I)$.

Let $\bar{d}: R(I) \times R(I) \rightarrow R$ be defined by

$$
\bar{d}(X, Y)=\sup _{0 \leq \alpha \leq 1} d\left([X]^{\alpha},[Y]^{\alpha}\right) .
$$

Then \bar{d} defines a metric on $R(I)$.
The additive identity and multiplicative identity in $R(I)$ are denoted by $\overline{0}$ and $\overline{1}$ respectively.
The sequence space $m(\phi)$ was introduced by Sargent [15], who studied its different properties and obtained its relations with the spaces ℓ^{p} and ℓ^{∞}. Later on the notion was further investigated and linked with summability theory by Tripathy [16], Tripathy and Sen [18] and many others.

Spaces of sequences of fuzzy numbers were studied by Matloka [9], Nuray and Savas [13] and many others.
Throughout the article w^{F} and $\left(\ell_{\infty}\right)_{F}$ denote the spaces of all and bounded sequences of fuzzy numbers, respectively.

II. Definition and Preliminaries

Definition. A sequence space E is said to be symmetric if $\left(X_{n}\right) \in E$ implies $\left(X_{\pi(n)}\right) \in E$, where π is a permutations of N.

Definition. A sequence space E is said to be convergence free if $\left(Y_{k}\right) \in E$, whenever $\left(X_{k}\right) \in E$ and $X_{k}=\overline{0}$ implies $Y_{k}=\overline{0}$.

Definition. A function $f:[0, \infty) \rightarrow[0, \infty)$ is called a modulus if
(a) $f(x)=0$ if and only if $x=0$
(b) $f(x+y) \leq f(x)+f(y)$, for $x \geq 0, y \geq 0$.
(c) f is increasing.
(d) f is continuous from the right at 0 .

Hence f is continuous everywhere in $[0, \infty)$.
We define the following sequence space

$$
m_{F}(f, \phi, p)=\left\{\left(X_{k}\right) \in w^{F}: \sup _{s \geq 1, \sigma \in P_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left[f\left(\bar{d}\left(X_{k}, \overline{0}\right)\right]^{p}<\infty\right\}\right.
$$

III. Main Results

Theorem 3.1. The set $m_{F}(f, \phi, p)$ is a complete linear metric space, with respect to the metric g defined by

$$
g(X, Y)=\sup _{s \geq 1, \sigma \in P_{s}} \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left[f\left(\bar{d}\left(X_{k}, Y_{k}\right)\right]^{p}\right.
$$

Proof. Since the linearity of $m_{F}(f, \phi, p)$ with respect to the co-ordinate wise addition and scalar multiplication is trivial, we omit the details.

Theorem 3.2. Let f be a modulus function. Then,

$$
m_{F}(f, \phi, p) \subseteq m_{F}(f, \psi, p) \text { if and only if } \sup _{s \in N} \frac{\phi_{s}}{\psi_{s}}<\infty .
$$

for the sequences $\left(\phi_{s}\right)$ and $\left(\psi_{s}\right)$ of real numbers.

Proof. Let $\sup _{s \geq 1} \frac{\phi_{s}}{\psi_{s}}=K(<\infty)$, then $\phi_{s} \leq K \Psi_{s}$ for all $s \in N$.
Then the inclusion $m_{F}(f, \phi, p) \subseteq m_{F}(f, \psi, p)$ follows from the following inequality:

$$
\frac{1}{K \psi_{s}} \sum_{k \in \sigma}\left[f\left(\bar{d}\left(X_{k}, \overline{0}\right)\right)\right]^{p} \leq \frac{1}{\phi_{s}} \sum_{k \in \sigma}\left[f\left(\bar{d}\left(X_{k}, \overline{0}\right)\right)\right]^{p}
$$

Conversely let $m_{F}(f, \phi, p) \subseteq m_{F}(f, \psi, p)$ and $\sup _{s \geq 1} \eta_{\mathrm{s}}=\infty$, where $\eta_{\mathrm{s}}=\frac{\phi_{s}}{\psi_{s}}$.
Then there exists a subsequence $\left\langle\eta_{s_{i}}\right\rangle$ of $\left\langle\eta_{\mathrm{s}}\right\rangle$ such that $\lim _{i \rightarrow \infty} \eta_{s_{i}}=\infty$.
Let $\left(X_{k}\right) \in m_{F}(f, \phi, p)$.

$$
\begin{gathered}
\text { Now } \sup _{s \geq 1, \sigma \in P_{s}} \frac{1}{\psi_{s_{i}}} \sum_{k \in \sigma}\left[f\left(\bar{d}\left(X_{k}, \overline{0}\right)\right)\right]^{p} \geq \sup _{s \geq 1, \sigma \in P_{s}} \frac{\eta_{s_{i}}}{\phi_{s_{i}}} \sum_{k \in \sigma}\left[f\left(\bar{d}\left(X_{k}, \overline{0}\right)\right)\right]^{p} \\
\geq\left(\sup _{i \geq 1} \eta_{s_{i}}\right)\left(\sup _{s \geq 1, \sigma \in P_{s}} \frac{1}{\phi_{s_{i}}} \sum_{k \in \sigma}\left[f\left(\bar{d}\left(X_{k}, \overline{0}\right)\right)\right]^{p}\right) \\
\\
=\infty
\end{gathered}
$$

Thus $\left(X_{k}\right) \notin m_{F}(f, \psi, p)$ as such we arrive at a contradiction.
Corollary 3.1. Let $0<p<1$, then $m_{F}(f, \phi, p)=m_{F}(f, \Psi, p)$ if and only if $\sup _{s \geq 1} \eta_{s}<\infty$ and $\sup _{s \geq 1} \eta_{s}^{-1}<\infty$ where $\eta_{\mathrm{s}}=\frac{\phi_{s}}{\psi_{s}}$.
The following result is obvious in view of the definition of the space.
Proposition 3.3. The space $m_{F}(f, \phi, p)$ is symmetric.
Property 3.4. The space $m_{F}(f, \phi, p)$ is not convergence free.
Proof. The proof follows from the following example.
Example 3.1. Let $f(x)=x, \phi_{n}=n$ for all $n \in \square$. Let the sequence $\left(X_{k}\right)$ be defined as,
For $k>2, \quad X_{k}(t)= \begin{cases}t+1, & \text { for }-1<t<0 \\ -t+1, & \text { for } 0<t<1 \\ 0, & \text { otherwise. }\end{cases}$

and $X_{k}=\overline{0}$, otherwise.
Let the sequence $\left(Y_{k}\right)$ be defined as,
For $k>1, \quad Y_{k}(t)= \begin{cases}1, & \text { for } 0<t<1, \\ (1-k)^{-1} t+k(k-1)^{-1}, & \text { for } 1<t<k, \\ 0, & \text { otherwise } .\end{cases}$

and $Y_{k}=\overline{0}$, otherwise.

Then $\left(X_{k}\right) \in m_{F}(f, \phi, p)$, but $\left(Y_{k}\right) \notin m_{F}(f, \phi, p)$.
Hence $m_{F}(f, \phi, p)$ is not convergence free.

References

[1] Altin, Y., Et, M. and Colak, R.: Lacunary statistical and lacunary strongly convergence of generalized difference sequences of fuzzy numbers; Computers and Math. Appl., 52(2006), 1011-1020.
[2] Altnok, H., Altin, Y. and Et, M.: Lacunary almost statistical convergence of fuzzy numbers; Thai J. Math. 2(2) (2004), 265-274.
[3] Basarir, M. and Mursaleen, M.: some difference sequence spaces of fuzzy numbers; J. Fuzzy Math. 11(3) (2003), 1-7.
[4] Bilgin T.: The sequence space $\ell(p, f, q, s)$ on seminormed spaces; Bull. Cal. Math. Soc. 86, 295-304 (1994).
[5] Et, M., Colak, R. and Altnok, H.: On λ-statistical convergence of difference sequences of fuzzy numbers; Infrom. Sci. 176(15) (2006), 2268-2278.
[6] Kaleva, O. and Seikkala, S.: On fuzzy metric spaces; Fuzzy Sets and Systems; 12 (1984), 215-229.
[7] Kamthan, P.K. and Gupta, M.: Sequence spaces and Series; Marcel Dekkar; 1980.
[8] Maddox I.J.: Sequence spaces defined by a modulus; Math. Proc. Camb. Phil. Soc. 100(1980), 161-166.
[9] Matloka, M.: Sequences of fuzzy numbers; BUSEFAL, 28(1986), 28-37.
[10] Mursaleen, M. and Basarir, M.: On some new sequence spaces of fuzzy numbers; Ind. J. Pure Appl. Math. 34(9)(2003), $1351-1357$.
[11] Nakano, H.: Concave modulars; J. Math. Soc. Japan; 5(1953), 29-49.
[12] Nanda, S.: On sequences of fuzzy numbers, Fuzzy sets and System 33(1989), 123-126.
[13] Nuray, F. and Savas, E.: Statistical convergence of fuzzy numbers; Math. Slovaca, 45 (3) (1995), 269-273.
[14] Ruckle, W.H.: FK spaces in which the sequence of coordinate vectors is bounded; Canad. J. Math.; 25(1973); 973 -978.
[15] Sargent, W.L.C.: Some sequence spaces related to the ℓ^{p} spaces; Jour. London Math Soc.; 35 (1960), 161-171.
[16] Sarma, B.: Some Sequence Spaces of Fuzzy Numbers Defined by Orlicz Function, Acta Scientiarum Technology, 37(1), 85-87, 2015.
[17] Tripathy, B.C. and Sen, M.: On a new class of sequences related to the space ℓ^{p}; Tamkang Jour. Math.; 33(2) (2002), $167-171$.
[18] Zadeh, L.A.: Fuzzy sets; Inform and Control, 8 (1965), 338-353.

