Some Sequences of Fuzzy Numbers Associated With a Modulus Function

Bipul Sarma MC College, Barpeta, Assam, INDIA *E-mail: drbsar@yahoo.co.in.*

Abstract. In this article we introduce fuzzy sequence space $m_F(f, \phi, p)$, 0 , defined by a modulus function. We study its different properties like solidity, symmetricity, completeness etc.*Keywords:Modulus function, solid space, symmetric space.*

AMS Classification No. 40A05 ; 46A45.

I. Introduction

Let P_s denote the class of all subsets of N, the set of natural numbers, those do not contain more than *s* elements. Throughout $\{\phi_n\}$ represents a non-decreasing sequence of real numbers such that $n \phi_{n+1} \le (n+1) \phi_n$, for all $n \in N$.

The class of these sequences $\{\phi_n\}$ is denoted by Φ .

The sequence space $m(\phi)$ introduced by Sargent [15] is defined as

$$m(\phi) = \{(x_k) \in w: \sup_{s \ge 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k| < \infty \},\$$

which becomes a Banach space, normed by

$$||x||_{m(\phi)} = \sup_{s \ge 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} |x_k|$$

The notion of modulus function was introduced by Nakano [11]. Later on different sequence spaces were defined by using modulus function and their different properties were investigated by Ruckle [14], Maddox [8], Bilgin [4] and many others.

Let *D* denote the set of all closed and bounded intervals $X = [a_1, a_2]$ on *R*, the real line. For $X, Y \in D$ we define

$$d(X, Y) = \max(|a_1 - b_1|, |a_2 - b_2|),$$

where $X = [a_1, a_2]$ and $Y = [b_1, b_2]$. It is known that (D, d) is a complete metric space.

A fuzzy real number X is a fuzzy set on R, *i.e.* a mapping $X : R \to I (=[0,1])$

associating each real number t with its grade of membership X(t).

A fuzzy real number X is called *convex* if $X(t) \ge X(s) \land X(r) = \min \{X(s), X(t)\}$, where s < t < r.

If there exists $t_0 \in R$ such that $X(t_0) = 1$, then the fuzzy real number X is called *normal*.

A fuzzy real number X is said to be *upper-semi continuous* if, for each $\varepsilon > 0$, $X^{1}([0, a + \varepsilon))$, for all $a \in I$ is open in the usual topology of R.

The set of all upper-semi continuous, normal, convex fuzzy real numbers is denoted by R(I) and throughout the article, by a fuzzy real number we mean that the number belongs to R(I).

The α - *level* set $[X]^{\alpha}$ of the fuzzy real number *X*, for $0 < \alpha \le 1$, defined as $[X]^{\alpha} = \{ t \in R : X(t) \ge \alpha \}$. If $\alpha = 0$, then it is the closure of the strong 0-cut.

The set *R* of all real numbers can be embedded in R(I). For $r \in R$, $r \in R(I)$ is defined by

$$\overline{r}(t) = \begin{cases} 1, & \text{for } t = r, \\ 0, & \text{for } t \neq r. \end{cases}$$

The *absolute* value, |X| of $X \in R(I)$ is defined by (see for instance Kaleva and

Seikkala [6])

$$|X|(t) = \max \{ X(t), X(-t) \}, \text{ if } t \ge 0, \\ = 0, \qquad \text{if } t < 0.$$

A fuzzy real number X is called *non-negative* if X(t) = 0, for all t < 0. The set of all non-negative fuzzy real numbers is denoted by $R^*(I)$.

Let $\overline{d}: R(I) \times R(I) \to R$ be defined by

$$\overline{d}(X, Y) = \sup_{0 \le \alpha \le 1} d\left([X]^{\alpha}, [Y]^{\alpha} \right).$$

Then *d* defines a metric on R(I).

The additive identity and multiplicative identity in R(I) are denoted by $\overline{0}$ and $\overline{1}$ respectively.

The sequence space $m(\phi)$ was introduced by Sargent [15], who studied its different properties and obtained its relations with the spaces ℓ^p and ℓ^{∞} . Later on the notion was further investigated and linked with summability theory by Tripathy [16], Tripathy and Sen [18] and many others.

Spaces of sequences of fuzzy numbers were studied by Matloka [9], Nuray and Savas [13] and many others.

Throughout the article w^F and $(\ell_{\infty})_F$ denote the spaces of *all* and *bounded* sequences of fuzzy numbers, respectively.

II. Definition and Preliminaries

Definition. A sequence space *E* is said to be *symmetric* if $(X_n) \in E$ implies $(X_{\pi(n)}) \in E$, where π is a permutations of *N*.

Definition. A sequence space *E* is said to be *convergence free* if $(Y_k) \in E$, whenever $(X_k) \in E$ and $X_k = 0$ implies $Y_k = \overline{0}$.

Definition. A function $f: [0, \infty) \rightarrow [0, \infty)$ is called a *modulus* if

- (a) f(x) = 0 if and only if x = 0
- (b) $f(x + y) \le f(x) + f(y)$, for $x \ge 0$, $y \ge 0$.
- (c) f is increasing.
- (d) f is continuous from the right at 0.
- Hence f is continuous everywhere in $[0, \infty)$.

We define the following sequence space

$$m_F(f,\phi,p) = \left\{ (X_k) \in w^F : \sup_{s \ge 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} [f(\overline{d}(X_k,\overline{0}))]^p < \infty \right\}$$

III. Main Results

Theorem 3.1. The set $m_F(f, \phi, p)$ is a complete linear metric space, with respect to the metric g defined by

$$g(X,Y) = \sup_{s \ge 1, \sigma \in P_s} \frac{1}{\phi_s} \sum_{k \in \sigma} [f(\overline{d}(X_k,Y_k))]^{l}$$

Proof. Since the linearity of $m_F(f, \phi, p)$ with respect to the co-ordinate wise addition and scalar multiplication is trivial, we omit the details.

Theorem 3.2. Let f be a modulus function. Then,

$$m_F(f, \phi, p) \subseteq m_F(f, \psi, p)$$
 if and only if $\sup_{s \in N} \frac{\phi_s}{\psi_s} < \infty$.

for the sequences (ϕ_s) and (ψ_s) of real numbers.

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

Proof. Let $\sup_{s\geq 1} \frac{\phi_s}{\psi_s} = K \ (<\infty)$, then $\phi_s \leq K \Psi_s$ for all $s \in N$.

Then the inclusion $m_F(f, \phi, p) \subseteq m_F(f, \psi, p)$ follows from the following inequality:

$$\frac{1}{K\psi_s}\sum_{k\in\sigma}[f(\overline{d}(X_k,\overline{0}))]^p \leq \frac{1}{\phi_s}\sum_{k\in\sigma}[f(\overline{d}(X_k,\overline{0}))]^p.$$

Conversely let $m_F(f, \phi, p) \subseteq m_F(f, \psi, p)$ and $\sup_{s \ge 1} \eta_s = \infty$, where $\eta_s = \frac{\phi_s}{\psi_s}$.

Then there exists a subsequence $\langle \eta_{s_i} \rangle$ of $\langle \eta_s \rangle$ such that $\lim_{i \to \infty} \eta_{s_i} = \infty$.

Let
$$(X_k) \in m_F(f, \phi, p)$$
.

Now
$$\sup_{s \ge 1, \sigma \in P_s} \frac{1}{\Psi_{s_i}} \sum_{k \in \sigma} [f(\overline{d}(X_k, \overline{0}))]^p \ge \sup_{s \ge 1, \sigma \in P_s} \frac{\eta_{s_i}}{\phi_{s_i}} \sum_{k \in \sigma} [f(\overline{d}(X_k, \overline{0}))]^p \ge (\sup_{i \ge 1} \eta_{s_i}) (\sup_{s \ge 1, \sigma \in P_s} \frac{1}{\phi_{s_i}} \sum_{k \in \sigma} [f(\overline{d}(X_k, \overline{0}))]^p) = \infty.$$

Thus $(X_k) \notin m_F(f, \psi, p)$ as such we arrive at a contradiction.

Corollary 3.1. Let $0 , then <math>m_F(f, \phi, p) = m_F(f, \Psi, p)$ if and only if $\sup_{s \ge 1} \eta_s < \infty$ and $\sup_{s \ge 1} \eta_s^{-1} < \infty$

where $\eta_{\rm s} = \frac{\phi_s}{\psi_s}$.

The following result is obvious in view of the definition of the space.

Proposition 3.3. The space $m_F(f, \phi, p)$ is symmetric. **Property 3.4.** The space $m_F(f, \phi, p)$ is not convergence free. **Proof.** The proof follows from the following example. **Example 3.1.** Let f(x) = x, $\phi_n = n$ for all $n \in \Box$. Let the sequence (X_k) be defined as,

For k > 2, $X_k(t) = \begin{cases} t+1, & \text{for } -1 < t < 0 \\ -t+1, & \text{for } 0 < t < 1 \\ 0, & \text{otherwise.} \end{cases}$

$$-1$$
 0 1

and
$$X_k = 0$$
, otherwise.

Let the sequence (Y_k) be defined as,

For
$$k > 1$$
, $Y_k(t) = \begin{cases} 1, & \text{for } 0 < t < 1, \\ (1-k)^{-1}t + k(k-1)^{-1}, \text{ for } 1 < t < k, \\ 0, & \text{otherwise.} \end{cases}$

0 1 2 3 4

and $Y_k = \overline{0}$, otherwise.

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

Then $(X_k) \in m_F(f, \phi, p)$, but $(Y_k) \notin m_F(f, \phi, p)$. Hence $m_F(f, \phi, p)$ is not convergence free.

References

- [1] Altin, Y., Et, M. and Colak, R.: Lacunary statistical and lacunary strongly convergence of generalized difference sequences of fuzzy numbers; *Computers and Math. Appl.*, 52(2006), 1011-1020.
- [2] Altnok, H., Altin, Y. and Et, M.: Lacunary almost statistical convergence of fuzzy numbers; *Thai J. Math.* 2(2) (2004), 265-274.
- [3] Basarir, M. and Mursaleen, M.: some difference sequence spaces of fuzzy numbers; J. Fuzzy Math. 11(3) (2003), 1-7.
- [4] Bilgin T.: The sequence space $\ell(p, f, q, s)$ on seminormed spaces; Bull. Cal. Math. Soc. 86, 295-304 (1994).
- [5] Et, M., Colak, R. and Altnok, H.: On λ-statistical convergence of difference sequences of fuzzy numbers; *Infrom. Sci.* 176(15) (2006), 2268-2278.
- [6] Kaleva, O. and Seikkala, S.: On fuzzy metric spaces; *Fuzzy Sets and Systems*; 12 (1984), 215-229.
- [7] Kamthan, P.K. and Gupta, M.: Sequence spaces and Series; *Marcel Dekkar*; 1980.
- [8] Maddox I.J.: Sequence spaces defined by a modulus; Math. Proc. Camb. Phil. Soc. 100(1980), 161-166.
- [9] Matloka, M.: Sequences of fuzzy numbers; *BUSEFAL*, 28(1986), 28-37.
- [10] Mursaleen, M. and Basarir, M.: On some new sequence spaces of fuzzy numbers; Ind. J. Pure Appl. Math. 34(9)(2003), 1351-1357.
- [11] Nakano, H.: Concave modulars; J. Math. Soc. Japan; 5(1953), 29-49.
- [12] Nanda, S.: On sequences of fuzzy numbers, Fuzzy sets and System 33(1989), 123-126.
- [13] Nuray, F. and Savas, E.: Statistical convergence of fuzzy numbers; *Math. Slovaca*, 45 (3) (1995), 269-273.
- [14] Ruckle, W.H.: FK spaces in which the sequence of coordinate vectors is bounded; Canad. J. Math.; 25(1973); 973 -978.
- [15] Sargent, W.L.C.: Some sequence spaces related to the ℓ^p spaces; Jour. London Math Soc.; 35 (1960), 161-171.
- [16] Sarma, B.: Some Sequence Spaces of Fuzzy Numbers Defined by Orlicz Function, Acta Scientiarum Technology, 37(1), 85-87, 2015.
- [17] Tripathy, B.C. and Sen, M.: On a new class of sequences related to the space ℓ^p ; *Tamkang Jour. Math.*; 33(2) (2002), 167–171.
- [18] Zadeh, L.A.: Fuzzy sets; Inform and Control, 8 (1965), 338-353.