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ABSTRCT- Support Vector Machine is a powerful classification technique based on the idea of Structural risk minimization. Use of a kernel 

function enables the curse of dimensionality to be addressed. However, a proper kernel function for a certain problem is dependent on the 

specific dataset and till now there is no good method on how to choose a kernel function. In this paper, the choice of the kernel function was 

studied empirically and optimal results were achieved for multi-class SVM by combining several binary classifiers. The performance of the 

multi-class SVM is illustrated by extensive experimental results which indicate that with suitable kernel and parameters better classification 

accuracy can be achieved as compared to other methods. The experimental results of three datasets show that Gaussian kernel is not always the 

best choice to achieve high generalization of classifier although it often the default choice. 

__________________________________________________*****_________________________________________________ 

I. INTRODUCTION 

In the past two decades valuable work has been carried out in 

the area of text categorization [10],[11], optical character 

recognition [13], intrusion detection [14], speech recognition 

[18], handwritten digit recognition [20] etc. All such real-

world applications are essentially multi-class classification 

problems. Multi-class classification is intrinsically harder 

than binary classification problem because the classification 

has to learn to construct a greater number of separation 

boundaries or relations. Classification error rate is greater in 

multi-class problem than that of binary as there can be error 

in determination of any one of the decision boundaries or 

relations.  

There are basically two types of multi-class classification 

algorithms. The first type deals directly with multiple values 

in the target field i.e.  K- Nearest Neighbor, Naive Bayes, 

classification trees in the class etc... Intuitively, these 

methods can be interpreted as trying to construct a 

conditional probability density for each class, then 

classifying by selecting the class with maximum a posteriori 

probability. For data with high dimensional input space and 

very few samples per class, it is very difficult to construct 

accurate densities. While the other approaches decompose 

the multi -class problem into a set of binary problems and 

then combining them to make a final multi-class classifier. 

This group contains support vector machines, boosting and 

more generally, any binary classifier. In certain settings the 

later approach results in better performance then the multiple 

target approaches.  

Support Vector Machines (SVMs) originally designed for 

binary classification are based on statistical learning theory 

developed by Vapnik [5][19]. Larger and more complex 

classification problems have subsequently been solved with 

SVMs. How to effectively extend it for multi-class 

classification is still an ongoing research issue [16]. The most 

common way to build a k class SVM is by constructing and 

combining several binary classifiers [9]. In designing 

machine learning algorithms, it is often easier to first devise 

algorithms to distinguish between two classes.  

SVMs are learning machines that transform the training 

vectors into a high-dimensional feature space, labeling each 

vector by its class.  It classifies data by determining a set of 

support vectors, which are members of the set of training 

inputs that outline a hyperplane in feature space [19]. It is 

based on the idea of Structural risk minimization, which 

minimizes the generalization error. The number of free 

parameters used in the SVM depends on the margin that 

separates the data points and not on the number of input 

features. SVM provides a generic technique to fit the surface 

of the hyperplane to the data through the use of an 

appropriate kernel function. Use of a kernel function enables 

the curse of dimensionality to be addressed, and the solution 

implicitly contains support vectors that provide a description 

of the significant data for classification [17]. The most 

commonly kernel functions are polynomial, gaussian and 

sigmoidal functions. Although in literature, the default choice 

of kernel function for most of the applications is gaussian. In 

training a support vector machine we need to select kernel 

function and its parameters, and value of margin parameter 

C. The choice of kernel function and parameters to map 

dataset well in high dimension may depend on specific 

datasets. There is no method to determine how to choose a 

appropriate kernel function and its parameters for a given 

dataset to achieve high generalization of classifier. The main 

modeling freedom consists in the choice of the kernel 

function and the corresponding kernel parameters, which 

influences the speed of convergence and the quality of 

results. Furthermore, the choice of the regularization 

parameter C is vital to obtain good classification results. 

In this paper, we have studied the choice of the kernel 

function empirically and optimal results were achieved for 

multi-class SVM using three benchmark datasets of UCI 
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repository of Machine Learning Databases [1]. This paper is 

organized as follows. Section 2 briefly reviews the basic 

theory of SVM. In section 3, we demonstrates the 

experiments of multi-class SVM (one against all) using 

different kernel functions on few datasets of UCI repository 

and provides the comparative result of classifier accuracy of 

multi-class SVM for different kernel functions. We also 

compare the accuracy with the available results for different 

datasets. We conclude and discuss scope of future work in 

section 4. 

II. SUPPORT VECTOR MACHINES 

A. Theory of Support Vector Machines 

This section briefly introduces the theory of SVM. Let {(x1, 

y1),…,(xm, ym)} R
n
 }1,1{   be a training set. The SVM 

classifier finds a canonical hyperplane {x   R 
n
 :   w

T
x + b = 

0, w }, RR  bn , which maximally separates given two 

classes of training samples in R
n
. The corresponding decision 

function }1,1{: nf R  is then given by  f (x) = sgn( w
T
x 

+ b). For many practical applications, the training set may 

not be linearly separable. In such cases, the optimal decision 

function is found by solving the following quadratic 

optimization problem: 

 

Minimize: J(w, 
2

1
)   w

T
w + C 



l

i
i

1
  

                                                   Subject to 

                                                yi ( w
T
xi + b) ,1 i    

mii ,...,2,1,0                         (1) 

    

where i is a slack variable introduced to relax the hard-

margin constraints and the regularization constant 0C  

determines the trade-off between the empirical error and the 

complexity term. The generalized optimization is based on a 

theorem about the VC dimension of canonical hyperplanes. It 

was shown that if the hyperplane is constructed under the 

constraint ||w|| A  then the VC- dimension of the class H is 

bounded by 1),22min(  nARh [19], where R is the radius 

of the smallest sphere around the data. Thus, if we bound the 

margin of a function class from below, say by 2/A, we can 

control its VC dimension and hence apply the SRM principle. 

 

Applying the Karush-Kuhn Tucker complimentarily 

condition [7] which gives optimal solution of a non-linear 

programming problem, we can write w =


m

i 1

yi i  xi  after 

minimizing (1). This is called the dual representation of w. A 

xi with nonzero i  is called a support vector. The 

coefficients i can be found by solving the dual problem of 

(1): 

 

Maximize:    L(α ) = 
2

1

1




l

i
i  



l

ji
ji

1,
 yi yj xixj 

                                             Subject to

 liCi ,...,2,1,0   

                     and         



m

i
iyi

1
0                                                                                      

(2) 

 

Let S be the index set of support vectors, then the optimal 

decision function becomes 

                    f (x) = sgn ( 
Si

yi i x
T

 xi  + b )                                                       

(3) 

 

The above equation gives an optimal hyperplane in R
n
. 

However, more complex decision surfaces can be generated 

by employing a nonlinear mapping  nR: F while at the 

same time controlling their complexity and solving the same 

optimization problem in F. It can be seen from (2) that xi 

always appears in the form of inner product  xi
T 

xj . This 

implies that there is no need to evaluate the nonlinear 

mapping   as long as we know the inner product in F for a 

given xi,
 
xj  .nR  So, instead of defining  nR:  F  

explicitly, a function RnRnR :K is introduced to 

define an inner product in F. The only requirement on the 

kernel K (x, y ) is to satisfy Mercer’s condition, which states: 

There exists a mapping   and an expansion  

K (x, y) =  
i

iyix )(.)(  

 if and only if, for any g (x) such that 

 g (x)2 d x   is finite 

 then  

 K (x, y) g (x) g ( y) dx dy  0 . 

 

Substituting K (xi , xj) for  xi
T

  xj  in  (3) produces a new 

optimization problem: 

 

Maximize    L(α ) = j
ji

i

m

i
i  




 1,2

1

1
yi yj K (xi , xj) 

                                           Subject to  miCi ,.....,1,0   

   and  



m

i
iyi

1
0                                                                                  

(4) 

 

Solving it for α  gives a decision function of the form 
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                   f (x) = sgn ( 


m

i
iiy

1
 K (xi , xj) + b)                                                  

(5) 

Whose decision boundary is a hyperplane in F, and translates 

to nonlinear boundaries in the original space. 

B. Multi-class Support Vector Machines 

All real world classification problems often involve more 

than two classes. Therefore, binary SVMs’ are usually not 

enough to solve the whole problem. The most common way 

to build a k-class SVM is by constructing and combining 

several binary classifiers. To solve multi-class classification 

problems, we divide the whole pattern into a number of 

binary classification problems. The two representative 

ensemble schemes are One against All (1-vs-many) and One 

against One (1-vs-1) [12]. One against All is also known as 

“one against others.” It trains k binary classifiers, each of 

which separates one class from the other )1( k  classes. 

Given a point X  to classify, the binary classifier with the 

largest output determines the class of X . One against One 

constructs 2/)1( kk  binary classifiers. The outputs of the 

classifiers are aggregated to make the final decision. 

Decision tree formulation is a variant of One against All 

formulation based on decision tree. Error Correcting output 

code is general representation of One against All or One Vs 

One formulation, which uses error correcting codes for 

encoding outputs [dietterich].The One against All approach, 

provides better classification accuracy in comparison to 

others [16]. Consequently, we have applied One against All 

approach in our experiments.  

Commonly used kernels for decision functions of a binary 

SVM classifier such as polynomial, Gaussian and sigmoid 

may not be suitable for binary classification to map every 

dataset well in high dimensional space. There can be other 

functions, which satisfy Mercer’s condition and can enhance 

classifier accuracy by appropriate transformation in high 

dimensional space. Few kernel functions [2] used in our 

experiment are shown in Table I. 

Table I:  Kernel Functions 

 Kernel  Function   )( ixxK ,       for 0  

Cauchy 

 )||1(1 2
ixx   

Gaussian 
2

i |xx| 
e  

Hyperbolic  

Secant 
| ))|exp(|)|(exp(2 ii xxxx  

 

Laplace | )|exp( ixx  

Squared Sinc 22 | )|(| )|(sin ii xxxx    

Symmetric  

Triangle )0| ,|1max( ixx   

 

III. EXPERIMENTAL RESULTS 

A.    Dataset 

In this section, we evaluated the performance of multi-class 

SVM using different kernel functions on the Iris, Wine and 

Glass datasets of UCI repository of Machine Learning [1]. 

The iris dataset records the physical dimensions of three 

different classes of Iris flowers. There are four attributes in 

the Iris dataset. The class Setosa is linearly separable from 

the other two classes, whereas the latter two are not linearly 

separable from each other. The Wine dataset was obtained 

from chemical analysis of wines produced in the same 

regions of Italy but derived from three different cultivars. 

There are 13 attributes and 178 patterns in this wine dataset. 

There are three classes corresponding to the three different 

cultivars. The collections of the Glass dataset were for the 

study of different types of glass, which was motivated by 

criminological investigations. At the scene of crime, the glass 

left can be used as evidence if it is correctly identified. The 

Glass dataset contains 214 cases. There are nine attributes 

and six classes in the Glass Dataset. 

 

C     Results 

The generalization performance is evaluated via a ten-fold 

cross-validation for each dataset. We have considered One 

against All method for designing a multi-class SVM. For a k-

class problem, we have developed multi-class SVM by 

combining k-binary SVM with the same value of C and  and 

tested the performance for different choices of kernel 

functions on predefined datasets. The most important 

criterion for evaluating the performance of multi-class SVM 

is their accuracy rate. For each multi-class SVM for a given 

kernel function, the hyperparameters space is explored on a 

two dimensional grid with the following values:  = [2
-10

, 2
-9

, 

2
-8

, …, 2
4
] and C = [2

-2
, 2

-1
, 2

0
, …, 2

12
]. For all the 255 

possible combinations of C and , the best and the average 

cross-validation accuracy is computed and rounded up to 

three decimal places. All the experimental tests were 

performed on a computer having Pentium 4 processor with 

512MB RAM.  
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Fig.  1.  Average classifier accuracy for Glass dataset using Gauss Kernel 

 

Fig. 1 shows the average cross-validation accuracy of the 

multi-class SVM classifier for the glass dataset using 

Gaussian kernel as a function of the two parameters C and . 

The figure below shows the variation in accuracy for 121 

combinations of C and  only. The optimal values of 

parameters can be chosen by visualizing the maximum value 

of average accuracy attained on the grid. 

Similarly, the experiments were performed on different 

datasets using other kernel functions. We observed that 

multi-class SVM demonstrates better accuracy for certain 

value of C and . The significance of choosing appropriate 

values of C and  can be realized from above 3D plot. 

However, we have analyzed the cross sectional view of the 

same in 2D. Due to the scarcity of space, we are presenting 

only the graphs for the kernel function having wider 

variation in classifier accuracy. Fig. 2(a) shows the variation 

of classifier accuracy of iris dataset with C for different 

values of  using Gauss kernel function. The variation of 

classifier accuracy of wine dataset with C for different 

values of  using Squared Sinc kernel function is shown in 

Fig. 2(b). Similarly, Fig. 2(c) shows the variation of 

classifier accuracy of glass dataset with C for different 

values of  using Laplace kernel function. 

Fig. 2(d) shows the variation of classifier accuracy of iris 

dataset with  for different values of C using Hyper Secant 

kernel function. The variation of classifier accuracy of wine 

dataset with  for different values of C using Squared Sinc 

kernel function is shown in Figure 2(e). Similarly, Figure 

2(f) shows the variation of classifier accuracy of glass 

dataset with  for different values of C using Laplace kernel 

function. We have observed from Fig. 2(a)-2(f) that the 

average cross-validation accuracy of multi-class SVM 

classifier for a given kernel function depends on the choice 

of C and . 

Fig. 3(a)-3(b) shows the variation of classifier accuracy of 

wine dataset with  for different kernel functions for C = 

4096 and 0.25 respectively. Similarly, Fig. 3(c)-3(d) shows 

the variation of classifier accuracy of wine data with C for 

all kernel function for  = 0.0078 and 0.5 respectively. It can 

be seen that for certain values of C, variation in certain 

range of  does not affect the cross-validation accuracy 

much, whereas large variation was observed in few cases. 

We found similar variation in results by varying C and 

keeping  being constant. 
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(f)Fig.2 Average classifier accuracy for different values of cost parameter and gamma. (a) 

Iris data using gauss kernel. (b) Wine data using squared sinc kernel. (c) Glass data using laplace kernel. (d) Iris data using 

hyperbolic secant kernel. (e) Wine data using squared sinc kernel. (f) Glass data using squared sinc kernel. 
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Fig. 3 Classifier accuracy for different kernel functions using wine dataset. 

 

We observed from above figures that accuracy of the 

classifier for a given dataset is also influenced by the dataset 

for all possible combinations of C &  using different kernel 

functions. The best and average cross-validation accuracy 

are shown in Table II with their optimal parameters C and . 

For comparison with multi-class SVM, we have also applied 

decision tree construction algorithm C4.5 [15] on the same 

datasets for determining the best and average cross-

validation accuracy. It can be observed that the best and 

average cross-validation accuracy using multi-class SVM is 

same or better than obtained by C4.5 for all datasets. 

Similarly, Table III compares the accuracy of multi-class 

SVM classifier with results obtained by C4.5 and available 

results [9] [20].  The best results in each category are 

indicated in bold. From Table III, It can be observed that our 

results are better in each category

 

Table II 

A comparison of classifier accuracy using different kernel functions 

 

Data set 
Kernel 

 
Gauss Cauchy Laplace 

Hyper 

Secant 

Squared 

Sinc 

Symmetric 

Triangle 
C4.5 

Iris 

Best 
100   

(2
4
,2

-5
) 

100        

(2
8
,2

-10
) 

100      

(2
3
,2

-5
) 

100         

(2
6
,2

-3
) 

100      (2
2
,2

-

1
) 

100      (2
8
,2

-

1
) 

100 

Average 
98    

(2
4
,2

-5
) 

96.667  

(2
8
,2

-10
) 

96.667 

(2
3
,2

-5
) 

98            

(2
6
,2

-3
) 

97.333  

(2
2
,2

-1
) 

96.667  (2
8
,2

-

10
) 

94 

Wine Best 
94.444  

(2
5
,2

-10
) 

94.444        

(2
9
,2

-10
) 

100      

(2
9
,2

-10
) 

100         

(2
12

,2
-9

) 

100      
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12

,2
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,2
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100 
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Average 
82.778 

(2
5
,2

-10
) 

81.111  

(2
9
,2

-10
) 

81.667 

(2
9
,2

-10
) 

94.444            

(2
12

,2
-9

) 

96.111  

(2
12

,2
-9

) 

82.222  

(2
12

,2
-10

) 
92.222 

Glass 

Best 
86.364  

(2
-1

,2
-4

) 

77.2727        

(2
4
,2

1
) 

81.818     

(2
2
,2

1
) 

86.364        

(2
0
,2

0
) 

86.364    

(2
0
,2

0
) 

81.818      

(2
0
,2

-1
) 

81.818 

Average 
69.091 

(2
0
,2

1
) 

71.818  

(2
1
,2

2
) 

70.909 

(2
0
,2

0
) 

70.909            

(2
-1

,2
1
) 

70.455 

(2
-1

,2
1
) 

69.546  

(2
0
,2

0
) 

71.818 

 

Table III 

A comparison of classifier accuracy using different methods for multi-class 

Dataset 

  
One 

against 

one    DAG 

One 

against 

all  C & S 

[20] C4.5 

Ours 

Different 

Methods [9] One against all 

Iris 

Accuracy 97.333 96.667 96.667 97.333 97.333 

100 

100 

(C, γ) 

(2
12

,2
-9

) (2
12

,2
-8

) (2
9
,2

-3
) (2

10
,2

-7
) (2

12
,2

-8
) (Gauss,2

8
,2

-3
) 

Wine 

Accuracy 99.438 98.876 98.876 98.876 98.876 

100 

100 

(C, γ) 

(2
7
,2

-10
) (2

6
,2

-9
) (2

7
,2

-6
) (2

1
,2

-3
) (2

0
,2

-2
) (Laplace,2

9
,2

-10
) 

Glass 

Accuracy 71.495 73.832 71.963 71.963 71.028 

81.818 

86.364 

(C, γ) 

(2
11

,2
-2

) (2
12

,2
-3

) (2
11

,2
-2

) (2
4
,2

1
) (2

9
,2

-4
) (HyperSec,2

0
,2

0
) 

 

IV. CONCLUSION 

The experimental results of three datasets show that 

Gaussian kernel is not always the best choice to achieve 

high generalization of classifier although it often the default 

choice. We exhibit the dependency of classifier accuracy on 

the different kernel functions of the multi-class SVM using 

different dataset. With the choice of kernel function and 

optimal values of parameters C and γ, it is possible to 

achieve maximum classification accuracy for all datasets.  It 

will be interesting and practically more useful to determine 

some method for determining the kernel function and its 

parameters based on statistical properties of the given data.  

Then the proposed method in conjunction with multi-class 

SVM can be tested on application domains such as image 

processing, text classification, intrusion detection etc. We 

are also examining the possibility of integrating fuzzy 

approach in the multi-class SVM classifier. 
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