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Abstract—Fully homomorphic encryption has long been regarded as an open problem of cryptography. The method of constructing first fully 

homomorphic encryption scheme by Gentry is complicate so that it has been considered difficult to understand. This paper explains the idea of 

constructing fully homomorphic encryption and presents a general framework from various scheme of fully homomorphic encryption. Specially, 

this general framework can show some possible ways to construct fully homomorphic encryption. We then analyze the procedure how to 

obtaining fully homomorphic encryption over the integers. The analysis of recrypt procedure show the growth of noise, and the bound of noise 

in recrypt procedure is given. Finally, we describe the steps of implementation.. 
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I.  INTRODUCTION 

Encryption has traditionally been viewed as a mechanism 

that enables secure communication [1]. For someone who 

have the secret decryption key can learn the entire message, 

but without the decryption key, the ciphertext is completely 

useless. Can we do arbitrary computations on data while it 

remains encrypted, without ever decrypting it? This question 

from Rivest et al. and then become a open problem in 

cryptography [2]. In a breakthrough work Gentry described 

in 2009 the first construction of a fully homomorphic scheme 

[3]. At 2010 van Dijk et al. described a fully homomorphic 

encryption scheme over the integers [4]. In recent years 

DGHV scheme was improved continuously by Coron et al. 

[5][6]. Asymptotics of FHE over integers are much better 

now. 

II. THE IDEA OF FULLY HOMOMORPHIC ENCRYPTION 

The first step in framework of Gentry’s scheme is to 

describe a somewhat homomorphic scheme that supports a 

limited number of additions and multiplications on 

ciphertexts rather than do arbitrary computation on 

ciphertexts [7]. This is because every ciphertext has a noise 

component and any homomorphic operation applied to 

ciphertexts increases the noise in the resulting ciphertext. 

Once this noise reaches a certain bound the resulting 

ciphertext does not decrypt correctly anymore. For example, 

the bit-size of noise isρand the threshold of noise size is k·

ρ , then the bound is reached after only log2k levels of 

multiplication. 

If one wants to achieve fully homomorphic encryption, 

the problem of noise growth must be solved. The Gentry’s 

idea of solving it is to decrypt ciphertext, but 

homomorphically! The decryption circuit is inputted in the 

bits of a secret key and the bits of a ciphertext, each 

encrypted under another public key. As long as the 

decryption circuit can be handle by this somewhat 

homomorphic scheme, the output is another ciphertext for 

the same plaintext. If the degree of the decryption 

polynomial is small enough, the new ciphertext's noise would 

less than the old cipertext's noise; this is called the 

"ciphertext refresh" procedure. One can refresh ciphertexts 

before every homomorphic operation. So, the decryption 

circuit is augmented by some gate- e.g., Add; call this 

augmented circuit. Since AND gate and XOR gate have the 

property of functional completeness [8]. That is, any other 

logic function can be implemented by combining AND gate 

and XOR gate. If the somewhat homomorphic scheme can 

handle augmented circuits, it means it do arbitrary 

computation on ciphertexts. This somewhat homomorphic 

scheme can obviously handle AND gate and XOR gate. So, 

it is critical whether the decryption circuit can be handled. If 

it can be, this calls “bootstrapping”. Unfortunately, it is 

not. Hence one needs to squash the decryption circuit so that 

the degree of the decryption polynomial is small enough. 

Then the somewhat homomorphic scheme can do arbitrary 

computation on ciphertexts. It means we get fully 

homomorphic encryption scheme. This framework has been 

instantiated with a number of cryptographic assumptions, 

yielding progressively simpler and more efficient schemes 

[9][10][11][12][13][14]. 

III. THE DGHV SCHEME 

At 2010 van Dijk et al. described the first fully 

homomorphic encryption scheme over the integers. The 

DGHV scheme was got from a symmetric encryption 
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scheme. Encrypt: c←m+2r+pq；Decrypt: m←(c mod p) 

mod 2=（c–p·*「c/p」）mod 2 = Lsb(c) XOR Lsb(「c/p

」). The key is a random odd integer p. Choosing at random 

large q and small r. A bit m∈  {0,1}. The plaintext space is a 

set of binary, and the Ciphertext space is a set of integers. 

The system as described above is obviously a somewhat 

homomorphic encryption scheme. Ciphertexts from above 

scheme are near-multiples of p. We call (c mod p) the noise 

associated to the ciphertext c. It is the distance to the nearest 

multiple of p. In order to turn it into a public key system, we 

take advantage of the homomorphic nature of the system. 

That is zero and one are also valid encryptions of 

themselves. 

The public key is pk={ xi；xi=ri+pqi }. Encryption of a 

plaintext m is then performed by selecting a random subset 

S from pk, a random noise r, and outputting the ciphertext c 

according to: c←m+2r+2∑i∈ sxi mod x0. Decryption is as 

same as above. This is a somewhat homomorphic encryption 

scheme in DGHV scheme. The security of the scheme 

reduces to the hardness of the approximate-GCD problem. 

The bound of noise is set to be p/8 in DGHV scheme. In 

fact, p/4 or p/16 is also correct, but p/2 is not. Because 

computing 「 c/p 」 is complicated, E cannot handle the 

function f(p, c)=「c/p」(Does it surprise you?). Hence it 

makes the decryption circuit become shallow by squashing 

the decryption circuit. 

The main idea of the transformation is to replace c/p, 

which multiplies two long numbers, with the summation of 

a fairly small set of numbers. In terms of the bits of the 

addends, this summation corresponds to a polynomial of 

fairly low degree that the somewhat homomorphic scheme 

can handle. Since c is ciphertext and shouldn’t be changed, 

we only transfer p to the summation of a fairly small set of 

numbers. However, p is secret key and cannot be open; p 

can only be hide in the summation. Hence we need a 

trapdoor to ensure the security of the hidden p. This trapdoor 

is the sparse subset sum problem (SSSP). Generate a set y = 

<y1,……,yt> of rational numbers in [0,2) such that there is a 

sparse subset S {1,……，t} of size α with ∑si·yi ≈ 1/p mod 

2 (i∈S). Set sk* to be the sparse subset S, encoded as a 

vector s {0,1}
t 
with Hamming weight α. Set pk*←(pk, y). 

Since ∑si· c·yi ≈ ∑si·zi ≈ c/p mod 2,  we transfer「c/p」to 

「∑si·zi 」 . Now the decryption circuit is converted to 

Lsb(c) XOR Lsb(「∑si· zi 」). The ciphertext c* consists of 

c and z = <z1,…… ， zt >. To see that the somewhat 

homomorphic scheme can handle the decryption function 

plus an additional gate when α is set small enough, let us 

consider the computation of the sum ∑si·zi. In this sum, we 

have numbers {ai | 1<=i<=α}, each ai expressed in 

binary{ai,j |1<=i<=α，0<=j<= -l) with l=(log α), where at 

most α of the ai's are nonzero. We want to express each bit 

of the output as a polynomial of the input bits, while 

minimizing the degree of the polynomial and the number of 

monomials. It can be achieved by some calculating skills. 

Finally, the somewhat homomorphic become 

bootstrappable. Then we get a fully homomorphic 

encryption scheme over integers.  

The public key size is Õ(λ
10

). In practice the size of the 

xi's should be at least 2
23

 bits to prevent lattice attacks. The 

public key size is then at least 2
46 

bits, which is too large for 

any practical system. 

The somewhat-homomorphic scheme relies on hardness 

of approximate-GCD. Resulting scheme relies also on 

hardness of sparse-subset-sum and circular security. There 

are two types attacks. The first consider attacks on the 

approximate-gcd problem for two numbers including brute-

forcing the remainders, continued fractions, and Howgrave-

Graham’s approximate gcd algorithm[15]. The second 

consider attacks for arbitrarily large values of t including 

lattice-based algorithms for simultaneous Diophantine 

approximation[16], Nguyen and Stern’s orthogonal 

lattice[17], and extensions of Coppersmith’s method to 

multivariate polynomials[18]. Since the sparse subset sum 

problem is not well study[19], it need to study deeply. 

IV. VARIANT OF THE DGHV SCHEME—CMNT SCHEME 

At 2011 Coron et al. proposed some techniques in [5] to 

reduce the public key size and increase the efficiency of the 

DGHV scheme, the most important of which is to use a 

quadratic form instead of a linear form for masking the 

message when computing a ciphertext. The idea consists in 

storing only a smaller subset of the public key and then 

generating the full public key on the fly by combining the 

elements in the small subset multiplicatively. More 

precisely, ciphertexts are computed as: c←m+2r+∑(bi,j﹒

xi,0﹒xj,0)mod x0 for 1≤ i, j ≤β,whereβis a new parameter. 

Then only 2βintegers need to be stored in the public key in 

order to generate the β 2
 integers used for encryption. 

Evaluate and decrypt is same as in the original scheme, 

except that ciphertexts are reduced modulo x0 after addition 

and multiplication.  

The idea of Squashing decryption circuit is same as 

DGHV scheme in order to get a fully homomorphic 

encryption scheme. However public key is be compressed in 

CMNT scheme by some techniques. Generate the yi's using 

a pseudo-random generator f(se) instead of storing the yi's in 

the public key as in [4]. Then only the seed se and y1 need to 

be stored in the public key, and the other yi's can be 

recovered during ciphertext expansion by applying f (se) 

again. In addition, encryptions of the secret key bits should 

also be made available publicly so that the Recrypt 

procedure is simply obtained by applying the decryption 

circuit to the ciphertext bits and the encrypted secret key 
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bits. Therefore one uses two bit vectors s(0) and s(1) of 

lengthΘ1/2
 Instead of generating the secret key as a single 

bit vector s=(s1, s2,……, sΘ). Then s is recovered on the fly 

during decryption as the following matrix withΘentries: si,j 

= s i (0)· sj(1).The encryption of the bits of s(0) and s(1) is 

σ(0) and σ(1). Finally, the secret key as sk = (s(0) ,s(1)), 

and the public key as pk = (pk*, se, u1,1, σ(0)，σ(1)) . 

This brings down public key size to about Õ(λ7
). 

CMNT scheme is still semantically secure, but under the 

(stronger) error-free approximate GCD assumption. The 

know attacks include brute force attack on the noise, 

approximate-GCD attack on the public key and lattice attack 

on the sparse subset-sum problem. Corresponding 72 bits of 

security, encryption and recryption take 3 minutes and 14 

minutes respectively, with a public key size of 800 MBytes. 

V. VARIANT OF THE DGHV SCHEME—CNT SCHEME 

At 2012 Coron et al. describe three technologies to 

improve DGHV schme.  

The first is a technique to reduce the public key size of 

DGHV-like schemes [5] by several orders of magnitude. 

The technology is first to generate the secret-key p. Then, 

use a pseudo-random number generator f with public 

random seed se to generate a set of γ bit integers χi (i.e. the -

χi's are of the same bit-size as the xi's). Finally, compute 

small corrections δi to the χi's such that xi= χi - δi is small 

modulo p, and store only the small corrections δi in the 

public key, instead of the full xi's. Knowing the PRNG seed 

se and the δi's is sufficient to recover the xi's. Therefore 

instead of storing a set of large xi’s in the public key we 

only store the much smaller δi’s. The new public key for the 

somewhat homomorphic scheme has size about Õ(λ
5
). 

Corresponding 72 bits of security, encryption and recryption 

take 7 minutes and 12 minutes respectively, with a public 

key size of 10.1MBytes. This encryption scheme is still 

semantically secure under the error-free approximate GCD 

assumption, albeit in the random oracle model. The know 

attacks is same as CMNT scheme. 

The second is Coron et al. prove that the natural 

extension of this quadratic encryption technique to to cubic 

forms, and more generally forms of arbitrary fixed degree d, 

remains secure, making it possible to further reduce the 

public key size. However, this quadratic encryption 

technique doesn’t use in the implementation. This is because 

the "squashed decryption" procedure adds an incompressible 

additional term u1 of size γ = Õ(λ
5
) to the public-key, so 

it is unnecessary to reduce the number of public-key 

elements xi or the number of encrypted secret-key bits. 

The third is Coron et al. show how to adapt Brakerski, 

Gentry and Vaikuntanathan's (BGV) new FHE framework 

[20] to the DGHV scheme over the integers. The new BGV 

framework is described in [20] with Brakerski and 

Vaikuntanathan's scheme [21], and the key technical tool is 

the modulus-switching technique of [21] that transforms a 

ciphertext c modulo p into a ciphertext c’ modulo p’ simply 

by scaling by p’/p and rounding appropriately. This allows to 

reduce the ciphertext noise by a factor close to p’/p without 

knowing the secret-key and without bootstrapping. Under the 

BGV framework the noise ceiling increases only linearly 

with multiplicative depth, instead of exponentially. However 

the modulus switching technique cannot directly apply to 

DGHV since in DGHV the moduli p and p’ are secret. It 

need to use some skill to achieve. First given as input a 

DGHV ciphertext c, and a “virtual” ciphertext of the form 

c’=2k·q’+r’ with [q’] = [q]2 can be obtained . This is done 

by first "expanding" the initial ciphertext c using the yi's, as 

in the "squashed decryption" procedure in [4], and then 

"collapsing" the expanded ciphertext into c', using the secret-

key vector s = (si). However we cannot reveal s in clear, so 

instead we provide a DGHV encryption under p’ of the 

secret-key bits si, as in the bootstrapped procedure. Then the 

expanded ciphertext can be collapsed into a new ciphertext 

c’’=2< σ ,c’>+[c]2 under p’ instead of p, for the same 

underlying plaintext. As in [20] a leveled fully homomorphic 

scheme can be constructed without bootstrapping. The 

security of this scheme is semantically secure under the 

decisional approximate GCD. Corresponding 72 bits of 

security, encryption and recryption take 3 seconds and 2 

hours 27 minutes respectively, with a public key size of 

18MBytes. The running time of the Recrypt operation is 

disappointing compared to the non-leveled implementation; 

however we think that there is room for improvement. A 

leveled fully homomorphic scheme include the bootstrapping 

operation; although not strictly necessary, this enables to get 

a FHE that can perform homomorphic evaluations 

indefinitely without needing to specify at setup time a bound 

on the multiplicative level. 

VI. CONCLUDE 

We describe the progress of fully homomorphic 

encryption over integers. The result show fully homomorphic 

encryption over integers is not only conceptual simplicity but 

also asymptotics are much better now. We think the high 

efficient method is similar to the modulus-switching 

technique should be to study in fully homomorphic scheme 

over integers. Moreover, we think, the running time of the 

Recrypt operation in the leveled implementation, there is 

room for improvement. 
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