
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 138 – 142

138

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

Simplification of Internet Ossification through Software Defined Network

Approach

Gaurav Kulkarni, Assistant Professor

Institute of Technology and Management Universe, Vadodara

Gujarat, India

Kulkarnigaurav2013@gmail.com

Abstract—— Software-Defined Networking (SDN) has received great responses from software industry in recent years. SDN has introduced

number of technical symposium and technical discussions on computer network paradigm and topological design, along with research and

scientific contributions. Fellow researchers, system administrators and engineers working on computer network, and hardware service providers

are trying to establish new standards and provide guidelines for proper accomplishment and exploitation of such fresh approach. Now a day’s

efforts have been made in the southbound of the SDN architecture, while the northbound interface still needs improvements. Focusing in the

SDN northbound, this paper is concentrating on relative study of the body of acquaintance and discusses the challenges for developing SDN

software.SDN also inspect and focused on the existing solutions and to search out trends and challenge on programming for SDN environments.

In this paper the vision developments on techniques, provision, and methodologies for programmable networks, with the correct view in respect

or aspect from the field of emerging software engineering is discussed..

Keywords — Software Defined Networking, SDN Programming Languages, Software Engineering.

__*****___

I. INTRODUCTION

The Internet architecture has become complex and hard to

manage. Due to its large development and level of maturity,

implementing strategies with a high degree of innovation is

risky because the success of the Internet depends on the

accurate operation of all of its subnets. The Internet became

static and difficult to change its structure, a phenomenon

known as Internet Ossification [1]. The need for making

networks more dynamic, robust, and able to be experimented

with new ideas and protocols in realistic scenarios brought a

new paradigm called Software-Defined Networking (SDN).

SDN enables a new network architecture that makes possible

for computer networks to be programmable [2]. In its essence,

SDN decouples the control plane from the forwarding plane. It

enables researchers and software developers to create and

deploy network applications, by abstracting the underlying

infrastructure and even

complex protocols present in traditional and legacy networks.

Programmable networks have been the subject of active

research in the past (e.g., Open Signaling [7], Active

Networking [8], and Ethane [9]). However, they failed to be

fully adopted by the industry due to many reasons, such as

focusing on the data plane programmability as well as

enabling programmability for specific network devices

vendors. Although some of the SDN concepts are not new, it

integrates the concepts of programmability in the network

architecture in order to offer better network management

strategies. In this scenario, Open Flow [2] has been considered

the de facto and widely accepted solution to implement SDN.

It is worth emphasizing that Open Flow and SDN terms

cannot be used interchangeably.

Open Flow is a protocol that defines an open standard

interface for SDN, and uses a programmable controller to

communicate with the forwarding plane, manage the

network, and possibly receive instructions from a network

application. Such an interface has a low-level

implementation, which offers basic features to developers.

The complexity involved in developing advanced SDN

software applications needs to be addressed by other means

(e.g., via new programming languages), in order to increase

its level of abstraction. In this scenario, full development and

deployment of such applications in staging and production

environments remains a challenge for network operators

[10].

Although some previous studies [11] [12] [13] [14] have

surveyed the state-of-the-art on SDN programmability, we

take a different perspective on the topic by describing the

techniques, methodologies, and challenges to develop and

deploy SDN software applications. We provide a unique

view from the perspective of the Software Engineering

discipline in which we present the evolution, current

maturity, and point out prospective research directions and

challenges to develop applications for SDN.

II. SOFTWARE DEFINED NETWORKING

The separation of the control plane from the forwarding

plane is one of the pillars of the SDN paradigm. Its

decoupled architecture enables network programmability.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 138 – 142

139

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

Historically, the research community made several attempts

to provide network programmability, where Active

Networking (AN) and Open Signaling (Opening) are

considered the seminal approaches [7].

A .SDN Architecture

When the control logic is decoupled from the forwarding

devices, all the network intelligence (e.g., decisions about

routing, permissions) is moved to the controller. The SDN

controller becomes the network component responsible for

network management, as Figure 1 depicts. Management then

occurs through a flow table present in the network switches,

which receive and register network rules defined by the

controller (cf. section II. C). In other words, the SDN

controller adds flow table entries in the switches for proper

packet or flow handling. The controller has all the necessary

network information (e.g., where the hosts are connected,

topology, and the like) that it uses to deal with possible

conflicts involving policies or to avoid misbehaviour of

network elements. As Figure 1 depicts, the controller has two

main interfaces, namely i) the northbound interface, for

higher-level elements to support the development of network

applications and services, or to program the SDN controller

through a well-defined API and ii) the southbound interface,

for the communication between controllers and network

switches.

FIGURE 1. NORTHBOUND AND SOUTHBOUND INTERFACES

IN AN SDN ARCHITECTURE.

 B. Controllers in the SDN architecture

The SDN controllers are strategic control elements that

communicate with the underlying switches (via SI) and with

applications on the top (via NI). An SDN controller sends

messages to switches disseminating specific or general

packet handling rules, which are generally defined by a

developer or administrator through the controller’s

northbound API [13] [14].

C. The Open Flow protocol

 The Open Flow protocol defines how the exchange of

information between control-plane and data-plane must

occur .When an Open Flow switch receives a packet, its

header fields are verified and compared to related fields in

the flow table entries. If an entry corresponds to this packet

header, the switch will perform the set of instructions or

actions related with the flow entry.

III. PROGRAMMING PARADIGMS, LANGUAGES

SPECIFICATION, AND SOFTWARE

ENGINEERING IN SDN

 The paradigm for programming languages applications

development is the declarative, used in most research papers

in the literature [04] [10] [14]. Declarative programming

languages have been characterized by its extremely formal

nature, often based on logic, but without arithmetic [42]. This

paradigm allows a developer to define what action needs to be

done in the network, but not how this action will do it. Please

note that this definition applies to all declarative programming

languages. To make it possible, a language interpreter is used

to translate the ―what‖ into ―how‖. An example involving this

approach in an SDN scenario is shown below, using the

Frenetic notation [10]:

 Select(packets) *

GroupBy([srcmac]) *

SplitWhen([inport]) *

Limit(1)

 Figure 3. Frenetic declaration to filter packets.

The example presented in Figure 3 demonstrates a high-level

declaration to filter packets in a given flow, which does not

require the programmer’s knowledge to implement how the

Select(packets) clause will receive and direct the packets to

some program or service that is requesting it.

Another widely used paradigm present in SDN programming

languages is the Functional Reactive Programming (FRP).

FRP is a well-suited solution for the development of event-

driven applications, such as SDN applications, enabling

programs to capture the time flow property pertinent to SDN

systems [13].The reactive characteristic of FRP is direct

related to the SDN environment, where switches and

controllers continuously exchange information upon packet

arrival and apply rules to the corresponding flow. When an

SDN language follows the FRP paradigm, it automatically

administers the time flow and the dependencies between data

and computation.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 138 – 142

140

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

The main idea behind FRP is to define everything in terms of

signals. A signal is an element in which its values change in

the course of time [14] (e.g., if a variable switch is equal to

false, its value might changes to true due to emission of a

signal). Figure 4 depicts a code example in the context of

FRP.

def ip_monitor():

return(Select(counts)* Where(inport_fp(1)) *

GroupBy([srcip]) * Every(INTERVAL))

Figure 4. FRP characteristic of Frenetic.

IV. ANALYSIS OF USE CASES AND APPLICATIONS

FOR SDN PROGRAMMING LANGUAGES

Prospective environments for SDN scenarios drive us to

analyze a number of specific applications and use cases for

SDN programmability. All the languages analyzed in this

survey have use cases and evaluation scenarios in their

respective publications. This section then presents an

overview of the SDN programming languages and their

possible applications to be developed.Initially we describe

and categorize the applications in the use cases previously

defined in this survey. Then, we map these applications and

use cases to the SDN programming languages that may be

used by developers to write them, as shown in Table 3. This

mapping defines the lessons learned in this survey, providing

directions on what language to use in developing SDN

applications.

Admission Control: An admission control application

enables the administrator to specify the authentication rules

for hosts and users that try to access the network. Admission

control applications can be implemented through an SDN

programming language to define what default connectivity is

allowed and which authentication mechanisms will be used.

Load Balancing: The load balancing use case might be seen

as a congestion-aware routing for networks [76]. With a load

balancing application, the controller prevents overload

instructing the switches how to balance the incoming traffic

among the network paths.

Quality of Service (QoS): For QoS applications, developers

may use how resources should be allocated to different users

and flow classes. This is done by setting some network

properties, such as latency and available bandwidth. These

applications to fit in the Applications-based Network use

case. This is because end-user software can communicate

with the SDN controller, which must be running a QoS

application, to request some network resource.

NAT Administration: The Network Address Translation

(NAT) Administration is generally used to enable multiple

machines within a private IP range to share a single public IP

address, mapping two pools of IP addresses. This translation

requires an implementation which alters the IP and port

number of each packet in the private network. This is the

basic difference between NAT and others applications

mentioned. In NAT administration, each packet in the flow

must be modified, therefore requiring the network switches

to support this functionality. In the SDN scenario, the NAT

administration application may be executed on the controller,

which installs rules into switches to perform the modification

of headers of certain packets corresponding to IP addresses

and port numbers that should have a specific quality [11].

Security Rules: A typical example of security rules is the

implementation of an IP addresses black list module that

prevents a malicious IP source addresses from sending traffic.

Fault Tolerance: An interesting use case involves network

resilience scenarios. For instance, in the case of a link failure,

the network should be able to choose a backup path

dynamically.

Deep Packet Inspection: It is a network application which

examines packet’s payload looking for patterns, such as from

well-known applications and services, viruses, attacks, and the

like. In SDN, the controller executes some algorithm to

perform DPI. SDN languages as Frenetic [10] and NetCore

[13] have features to implement DPI applications.

After the text edit has been completed, the paper is ready for

the template. Duplicate the template file by using the Save As

command, and use the naming convention prescribed by your

conference for the name of your paper. In this newly created

file, highlight all of the contents and import your prepared text

file. You are now ready to style your paper; use the scroll

down window on the left of the MS Word Formatting toolbar.

Cloud Orchestrator: The Cloud Orchestration use case needs

a software orchestrator in order to manage the network and the

virtual machines. All SDN languages partially enable the

implementation of such a software, because they only provide

methods to implement a network application, which in this

case may create the network orchestrator. The orchestrator of

virtual machine needs to be developed with third parties

programming languages or obtained from vendors.

Policy Specification: The most basic feature of an SDN

application and environment is the specification of policies.

All the analyzed SDN programming languages enable the

implementation of policies in several ways, as well as

applications to define the network behavior through policies.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 138 – 142

141

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

However, they differ in the way of writing and implementing

these policies in practice.

Network Monitor: Foster et al. [16] argue that querying

network state is one of the fundamental elements in

programming SDNs. A Network Monitor application in SDN

can observe and request several types of information (e.g.,

packet counter state in a switch). All languages analyzed allow

the implementation of applications that monitor network

states.

Correctness: The verification and validation of network

applications are desired features [14] [15]. SDN programming

languages might offer constructs that help developers to avoid

network misbehavior (i.e., verification), and to build correct

applications (i.e., validation), according to the specified

requirements.

V. FUTURE WORK

 How to handle network failures? A recurrent discussion on

SDN research involves handling of failures. Failures can

occur in the availability of a controller or even in wrong

policy rules defined by an SDN application. The authors of

FatTire argue that programmers do not write programs using

the primitive fast-failover OpenFlow mechanisms directly

due to the increment of complexity in failure-handling

control, which might make code more complex.In order to

handle failures in SDN programming, the language needs to

support an abstraction of the OpenFlow forwarding table

called a group table. Group table consists of group entries.

The ability for a flow entry to point a group enables

OpenFlow to represent more methods of forwarding[16]. It

enables multiple conditional rules in OpenFlow. One of the

group table types is the fast failover (FF). The fast failover

determine that if a flow entry belongs to this group type, the

first action bucket (an ordered list of actions) will be

performed.

FatTire [14] abstracts the construction of a fast failover group

table, generating the entries in such group table

automatically. This approach avoids the error-prone

development made by programmers when interacting with

fast failover group table directly [14].

From the Software Engineering perspective, the development

of fault-tolerant applications must be based on languages that

define dependable features or build rules created from formal

methods. For instance, a language that provides modular

development may enable an SDN application to run as

redundant modules in replicated controllers, thus improving

the recovering time of a network failure. However,

synchronizing such modules is not a trivial task [13].

How to avoid conflicting rules? This is a challenge

investigated by some research studies (e.g., PANE [80],

Pyretic [16]). Avoiding conflicts means that a policy rule X

does not invalidate a policy rule Y, and vice-versa,

simultaneously, so that at least one policy rule should be

correctly applied. In [16], Hinrichs et al. proposed two

conflict resolution mechanisms, which we consider a

valuable path to effective SDN programming, i.e. one has its

features at the level of keywords, identifying the conflicting

policies. The other mechanism is a schema that defines

priority to each keyword (e.g. the keyword deny has

precedence over the keyword allow). A similar approach can

be also found in [15]. One possible approach to address

conflicts in policies could be based on a DSML. In such an

approach, invalid policies that result in conflicts could not be

created due to the constraints contained in an underlying

metamodel.

How can one realize automated tests? In order to identify

inconsistencies or unexpected states in an SDN application,

Canini et al. [12] and Vissichio et al. [12] propose

approaches to realize tests in SDN applications. End-host

applications and switches affect the program running on the

controller. In [10] Canini et al. address this challenge by

generating flows with several possible events occurring in

parallel. It also enables the programmer to verify generic

correctness properties (e.g., forwarding loops or black holes)

and code validation (i.e., global system state determined by

code fragments). On the other hand, in [82] Vissichio et al.

use Test-Driven Development (TDD) to perform tests on

SDN applications.

How to abstract the complexity in SDN development

efficiently? The low level of abstraction used by OpenFlow

and its releases makes it hard to program applications and to

define a desired behavior into the network. The studies

analyzed suggest that a decomposition of the controller,

through one relationship with the OpenFlow protocol and

adding a layer to specify policies, reduces the complexity to

develop and deploy SDN applications, mainly due to the

readiness to build applications without the need to worry about

maintaining consistency of various rules present in an SDN

environment. Therefore, such an abstraction is more than only

adding more layers for SDN architecture or controllers; it also

provides smart structures that reduce the complexity in SDN

applications development, and not just encapsulating the

methods from the underlying structures. Furthermore, this

layering and efficient structures can be used by some DSML,

further increasing the level of abstraction, enabling the

concrete visualization of network behavior.

Be reactive or proactive? The proactive or reactive behavior

and structure of a certain SDN language will depend closely

on the controller and how packet handling occurs. It is worth

emphasizing that one could follow a hybrid approach, where a

combination of both strategies allows the flexibility from

reactive paradigm to particular sets of traffic control, while

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 12 138 – 142

142

IJFRCSCE | December 2017, Available @ http://www.ijfrcsce.org

proactively providing low latency routing for ordinary traffic.

Creating a framework or SDN language to support these two

main approaches seems to be the most correct way to achieve

completeness. As far as we are concerned to create an SDN

language, the possibility of defining a DSML enables

developers to develop high-quality SDN applications. This

isdue to the ability of DSML to raise the level of abstraction in

software programming, because its visual representations are

easier to understand than the syntax of textual programming

languages.

How to improve the SDN programmability? Although this

question allows a number of answers, we aim at presenting

and discussing the four most important issues that need

improvements: i) verifying and validating applications (e.g.,

consistent updates, rules, and the like), which could be

achieved by using DSMLs or constraint checkers in compilers;

ii) offering high-level tools for developers, since there is no

widespread tool (e.g., Integrated Development Environment –

IDE, CASE tool) for creating SDN applications; iii) providing

programming languages independent from the underlying

controllers or southbound protocols, which fortunately there

are some efforts in this direction, such as P4; and iv) writing

applications that meet network dependable requirements.

VI. CONCLUSION

Some current challenges show that the programming of SDN

applications is still complex and not completely standardize.

Although there are several abstractions at application level

for SDN there are still some issues to be addressed such as

interoperability, fault handling ,conflict resolution or

detection.SDN offers the opportunity of of innovative and

powerful networking scenarios, the development of correct

application with efficiency and efficacy is still work in the

progress. In particular advance study MDD/DSML is a

possible research path in order to achive correctness,

completeness and ease of use and productivity.

REFERENCES

[1] R. C. Gronback, Eclipse Modeling Project: A Domain-

Specific Language (DSL) Toolkit, Addison-Wesley

Professional, 2009.

[2] T. Özgür, "Comparison of Microsoft DSL Tools and Eclipse

Modeling Frameworks for Domain-Specific Modeling In the

context of the Model Driven Development," School of

Engineering. Ronneby, Sweden: Blekinge Institute of

Technology, p. 56, 2007.

[3] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell and S.

Shenker, "Practical Declarative Network Management,"

WREN, 21 August 2009.

[4] A. Voellmy, A. Agarwal and P. Hudak, "Nettle: Functional

Reactive Programming for OpenFlow Networks," PADL, July

2011.

[5] C. Monsanto, N. Foster, R. Harrison and D. Walker, "A

Compiler and Run-time System for Network Programming

Languages," POPL, 25-27 January 2012.

[6] C. Monsanto, J. Reich, N. Foster, J. Rexford and D. Walker,

"Composing Software-Defined Networks," NSDI, 2013.

[7] N. P. Katta, J. Rexford and D. Walker, "Logic Programming

for Software-Defined Networks," ACM SIGPLAN Workshop

on Cross-Model Language Design and Implementation, 2012.

[8] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,

B. Fulton, I. Ganichev, J. Gross, P. Ingram, E. Jackson,

"Network virtualization in multi-tenant datacenters," 11th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 14), pp. 203-216, April 2014.

[9] T. Nelson, A. D. Ferguson, M. J. Scheer and S.

Krishnamurthi, "Tierless Programming and Reasoning for

Software-Defined Networks," Proceedings of the 11th

USENIX Symposium on Networked Systems Design and

Implementation, 2-4 April 2014.

[10] N. Foster, M. J. Freedman, A. Guha, R. Harrison, N. K.

Praveen, C. Monsanto, J. Reich, M. Reitblatt, J. Rexford, C.

Schlesinger, A. Story and D. Walker, "Languages for

Software-Defined Networks," IEEE Communication

Magazine, February 2013.

[11] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,

M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama and S.

Shenker, "Onix: A Distributed Control Platform for Large-

scale Production Networks," USENIX OSDI, pp. 351-364,

Octuber 2010.

[12] M. Strembeck and U. Zdun, "An approach for the systematic

development of domain-specific languages," Journal

Software—Practice & Experience, pp. 1253-1292, Oct 2009.

[13] A. Voellmy, H. Kim and N. Feamster, "Procera: a language

for high-level reactive network control," HotSDN '12

Proceedings of the first workshop on Hot topics in software

defined networks, pp. 43-48, 2012.

[14] D. C. Schmidt, "Model-Driven Engineering," IEEE

Computer, 39(2) February 2006.

[15] A. Van Deursen, P. Klint and J. Visser, "Domain-Specific

Languages: An Annotated Bibliography," Sigplan Notices

35.6, pp. 26-36, 2000.

[16] A. F. Case, "Computer-aided software engineering (CASE):

technology for improving software development

productivity," ACM SIGMIS Database. Volume 17 Issue 1,

pp. 35-43, 1985.

[17] D. Frankel, Model Driven Architecture: Applying MDA to

Enterprise Computing, New York, NY, USA: John Wiley &

Sons, Inc., 2002.

[18] T. Stahl, M. Voelter and K. Czarnecki, Model-Driven

[19] Software Development: Technology, Engineering,

Management, John Wiley & Sons, 2006.

