A Review and Performance Analysis of Image Edge Detection Algorithms

Dr. J. Vijayakumar Associate professor and Head, Department of Electronics and Instrumentation, Bharathiar University- Coimbatore, Tamil nadu, India. *E-mail: vijayakumar@buc.edu.in* L. Jeganson Durai Research Scholar, Department of Electronics and Instrumentation, Bharathiar University- Coimbatore, Tamil nadu, India. *E-mail: jegansondurai@gmail.com*

Abstract— Edge detection is the fundamental operation of digital image processing and applied in many fields like industrial, medical, satellite, agriculture etc. According to this growth of edge detection applications, many researchers and scholars are interested to develop the edge detection algorithm by using various techniques. This paper illustrates the review for what are the novel techniques are used for the edge detection, which operators are mostly used by them and how they get the accurate results to compare with existing methods. It also discussing the performance analysis of most commonly used edge detection operators such as Canny, Laplacian Gaussian (LoG), Sobel, Prewitt and Roberts, Finally the accuracy, PSNR (Peak Signal to Noise Ratio) and execution time are tabulated and realize the most precious and fast computed edge detection method is uncovered.

Keywords- Image Processing, Edge Detection, Corneal Diseases

I.

INTRODUCTION

Edge is a basic and important feature of an image. Detecting edges is one of the most important aspects in image processing. Edge detection is a vital step as it is a process of identifying and locating sharp discontinuities in an image, which is one of the most frequently used operations in image analysis, and there are possibly more methods and algorithms in the literature for detecting edges than any other single subject. If the edges of images could be recognized, all the objects can be found well planned and executed can be measured easily.

Edge detection is one of the most important feature detection problem in image processing. Edge detection is an essential step as it is a process of recognizing and detects the objects in an image and there are possibly more methods and algorithms. An edge is the borderline between an object and the background, i.e. visually the object is separated from the background. If the edges of images could be recognized, all the objects can be found well planned and executed can be measured easily. Basically, before the edge detection process the image is grayscale image is converted into binary image in the output.

Many algorithms and operators are proposed by researchers to detect the edges accurately. This work is the type of review article, which reviews the recent edge detection algorithms to reducing the limitations of existing methods. Then the survey on edge detection operators to find which the most used operator is and how it is used as an ideal operator in noise images to give the successive approximation results. And finally the performance of the edge detectors are analyzed with mathematical operations and discussed with results.

II. REVIEW OF LITERATURE

There are many proposals for image edge detecting techniques, which are very advancement to the existing methods. Here some proposed methods are tabulated and which type of operator is maximally used to those novel approaches are also presented. The operators are denoted as the following letters: (Canny- C, Sobel-S, Robert-R, LoG-L, Prewitt-P, Fuzzy-F, Edison-E, Wavelet Transform-W, SUSAN-Su, Rothwell-Rw, Hyperbolic Mask- HM and Mexican Hat Mask -MHM)

Used Technique	Type of	Comments
to edge detection	operators	
C C	used	
A Complex	S,P,R,C,L	Sobel Operator is the nearest
Network		accuracy to the proposed
Approach [1]		system
Based on Ant	C,S,L,R	Execution time of Each
colony		operators is better than the
Optimization [2]		proposed method
A high payload	C,S,F	Fuzzy operator's PSNR
stenographic		value is better than other
algorithm [3]		operators
By using	C, HM,	Hyperbolic edge detector is
Hyperbolic and	MHM	effective than others
Gaussian Masks		
[4]		
By using Multi-	W	Wavelet transform's
direction Shear		Running Time is lesser than
Transform [5]		proposed method
Edge detection	S	Sobel operator in spatial
Method in DCT		domain is less capability

International Journal on Future Revolution in Computer Science & Communication Engineering Volume: 3 Issue: 12

T		
domain [6]		than proposed method
Least squares	C,W,L	Execution time of Each
support vector		operators is better than the
machine in a		proposed method
contour let HMT		
domain [7]		
	1	
By Using White-	R,S,P,L	The coordinate precision
Gaussian Noise		values are approximately
[8]		equal to proposed method
LS-SVM-based	C,S	The performance of
edge detection [9]		proposed system is similar
		to the Canny detector
Learning based	C,S	Execution time of both
Robust Edge		operators is better than the
detection		proposed method
algorithm [10]		1 1
Improve Sobel	S,F	Proposed method is
Edge Detector	2,2	modified successfully by
[11]		using fuzzy sets
A Bacterial	C,S,E, Su,	
Foraging	Rw	method is approximately
	IX W	similar to the others
Technique [12]	С	
A Novel particle	C	The accuracy of the
swarm		proposed system is higher
optimization		than the canny operator
approach [13]		
By using Area	C,L	Objective comparison of
Operators [14]		proposed method is
		approximately similar to
		the others
A survey on	S,P,R,C,L	
Various		declivity edge detector is
techniques [15]		better than these operators
By Using Cellular	S,P,R,C,L	
automata [16]		directed and undirected
		edges than others
Data Fusion	C	The proposed algorithm is
Technology [17]		complex, when reducing
0, 1		the Gaussian noise
By using Quasi	S,C,L	The proposed operator
high-pass filter		outperformed other
[18]		operators
By using KPCA-	S,P,R,L,C	<u> </u>
SCF based on the		operator is very low when
kernel method		compared to the others
[19]		compared to the others
By using Sparse	SDDC	The proposed method is
Banded filter	S,P,R,C	The proposed method is
		inaccurate when compare
Matrices [20]		to the Sobel, Canny
Fuzzy Collular	ССЕ	operators
Fuzzy Cellular	C,S,F	Fuzzy edge images are
Automata		more precious than Canny
transition function		and Sobel Operator
[21]		
LoG-Sobel	S,L	The effect of proposed
Method [23]		algorithm is better and
	ļ	much quicker
Based on	C,S,P,L	Edge similarity strength is

Anisotropic		measured and
Diffusion-driven		comparatively proposed
Process [24]		method has highly
		similarities than others
Comparison of	S,P,C,L,R	Canny algorithm has the
various techniques		better performance than
used in Image		others
Processing [25]		
A Survey of Soft	S,P,C,L,R,	The proposed fuzzy based
computing	F	method has more
approaches [26]		efficiency properties than
		others

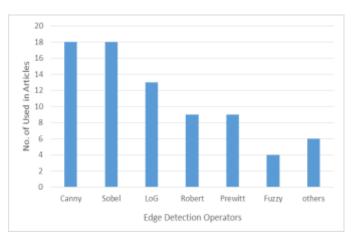
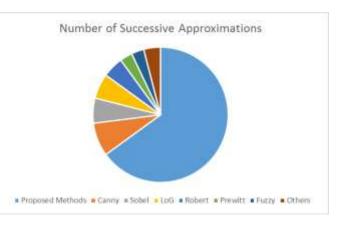
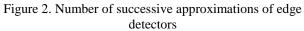
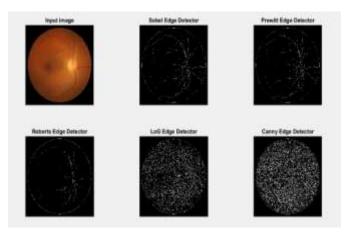




Figure 1. Edge detection operators and its number of used in articles



From Table 1 and Figures1 & 2, Canny, Sobel, LoG, Robert, Prewitt are the most used edge detection operators for analyzing and compared with their proposed method. Most of the articles, their proposed method is only more accuracy than other operators. The Canny, Sobel operators are mainly produced accuracy only, not for time consumption. LoG and other operators, especially the fuzzy logic and neural network system are the growing proposals of edge detection techniques.

International Journal on Future Revolution in Computer Science & Communication Engineering Volume: 3 Issue: 12

III. PERFORMANCE ANALYSIS

The Performance analysis of the edge detection techniques is used to find out the better operator to detect the edges. For our research purpose, the corneal disease images are given as the input images, which are classified into five types. They are Age-related Macular Degeneration (AMD), Diabetic Macular Edema (DME), Retinal Vein Occlusion (RVO), Choroidal Neo Vascularization (CNV) and Pathologic Myopia (PM). These images are processed with edge detection operators (Sobel, Prewitt, Robert, LoG and Canny) to detect the edges as follows: (Figure 3 -7) and also the performance of those operators is analyzed with mathematical operations.

Figure 3. Age-related Macular Degeneration disease and its edges are detected

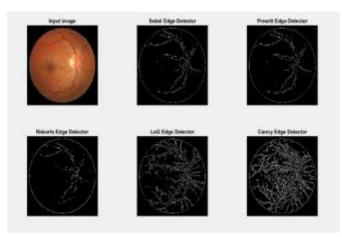


Figure 4. Diabetic Macular Edema disease and its edges are detected

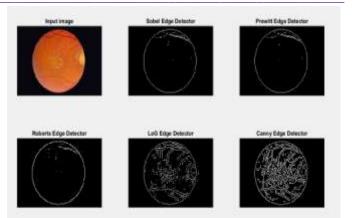


Figure 5. Retinal Vein Occlusion disease and its edges are detected

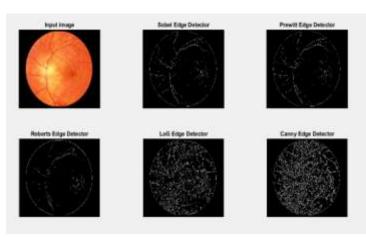


Figure 6. Choroidal Neo Vascularization disease and its edges are detected

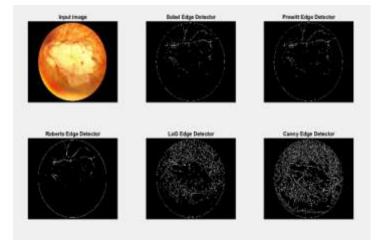


Figure 7. Pathologic Myopia disease and its edges are detected

The following mathematical operations are used to analyze the edge detection operator.

$$\blacktriangleright \quad \text{Accuracy} = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

- > Peak Signal to Noise Ratio (dB) =10 $log_{10} \frac{(255)^2}{MSE}$
- Execution Time (sec) = Executed time Starting Time

IV. RESULTS AND DISCUSSIONS

From the figures 8, 9, 10, the accuracy of the different edge detectors for various corneal diseases are illustrated. From these results the Sobel operator is less sensitive to noise and the canny operator having the highest accuracy level which is better detection in noise condition. Prewitt Operator has very low accuracy level when compare to the others, which states that Prewitt Operator is inaccurate to the noise. Robert operators have low accuracy level and highly susceptible to noise. The LoG operator is detecting the false edges in high probability. Canny operator is also reducing the probability of false and sharper edges.

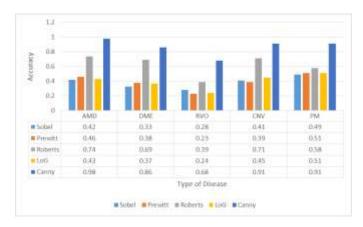


Figure 8. Calculation of Accuracy

Figure 9. Calculation of PSNR

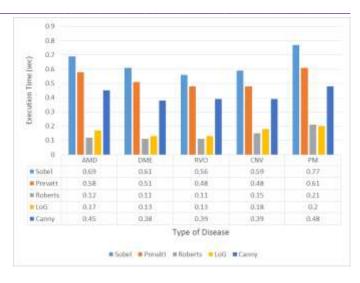


Figure 10. Calculation of Execution Time

Canny Edge detectors are having the improved signal to noise ratio value. At the same time, it is difficult to give a generic threshold that works well on all images. When compared with the canny operator, LoG operators having the better values but Sobel operator has less reliable in signal to nose ratio. Prewitt and Robert operators are maintain the average levels between Canny and LoG operators. In the LoG operator, the characteristics are fixed in all directions, so that its detection of edges and their orientation is simple. As the view of Execution time, the Robert operator is computed quickly than others. As a contradiction, canny edge detectors are Greater computational complexity operator and which consumes more time.

V. CONCLUSION

The main objective of this paper is to present a review of various approaches for image edge detection algorithms. The performance analysis also presented to evaluate edge detection operators and their experimental results shows that canny yield best results but poor execution time. LoG, Sobel operators gives the more accuracy and Prewitt operator is quickly computed. The Values of accuracy, PSNR and execution time are calculated for various operators. Finally, the novel edge detection algorithms are reviewed and the performance of edge detective operators is analyzed.

REFERENCES

- Saban Öztürk, Bayram Akdemir, 'Comparison of Edge Detection Algorithms for Texture Analysis on Glass Production' Procedia - Social and Behavioral Sciences 195 (2015) 2675 – 2682
- [2] Xiaochen Liu, Suping Fang, 'A convenient and robust edge detection method based on ant colony optimization' Optics Communications 353 (2015) 147–157
- [3] Junlan Bai a, Chin-Chen Chang b, Thai-Son Nguyen c, Ce Zhu a, Yanjun Liu, 'A high payload stenographic algorithm based on edge detection' Displays 46 (2017) 42–51
- [4] Khoa N. Le, 'A mathematical approach to edge detection in hyperbolic-distributed and Gaussian-distributed pixel-intensity

images using hyperbolic and Gaussian masks' Digital Signal Processing 21 (2011) 162–181

- [5] Pengfei Xu, Qiguang Miao, Cheng Shi, Junying Zhang, Weisheng Li, 'An edge detection algorithm based on the multidirection shear transform' J. Vis. Commun. Image R. 23 (2012) 827–833
- [6] Zhenxing Qiana, Wenwen Wang, Tong Qiao, 'An Edge Detection Method in DCT Domain' Procedia Engineering 29 (2012) 344 – 348
- [7] Gh.S. El-tawel, A.K. Helmy, 'An edge detection scheme based on least squares support vector machine in a contour let HMT domain' Applied Soft Computing 26 (2015) 418–427
- [8] Qinghang He, Zhenxi Zhang, 'A new edge detection algorithm for image corrupted by White-Gaussian Noise' Int. J. Electron. Commun. (AEÜ) 61 (2007) 546 – 550
- [9] Sheng Zheng , JianLiu, JinWenTian, 'A new efficient SVMbased edge detection method' Pattern Recognition Letters 25 (2004) 1143–1154
- [10] Sasirooba Thirumavalavan, Sasikala Jayaraman, 'An improved teaching-learning based robust edge detection algorithm for noisy images' Journal of Advanced Research (2016) 7, 979–989
- [11] Neha Mathur, Shruti Mathur, Divya Mathur, 'A Novel Approach To Improve Sobel Edge Detector' Procedia Computer Science 93 (2016) 431 – 43
- [12] Om Prakash Verma, Madasu Hanmandlu, Puneet Kumar, Sidharth Chhabra, Akhil Jindal, 'A novel bacterial foraging technique for edge detection' Pattern Recognition Letters 32 (2011) 1187–1196
- [13] Mahdi Setayesh, Mengjie Zhang, Mark Johnston, 'A novel particle swarm optimisation approach to detecting continuous, thin and smooth edges in noisy images' Information Sciences 246 (2013) 28–51
- [14] Scott T.Acton, Dipti Prasad Mukherjee, 'Area operators for edge detection' Pattern Recognition Letters 21 (2000) 771-777
- [15] Saket Bhardwaja, Ajay Mittal, 'A Survey on Various Edge Detector Techniques' Procedia Technology 4 (2012) 220 – 226
- [16] Mohammad Hasanzadeh Mofrada,b, Sana Sadeghic, Alireza Rezvanian, Mohammad Reza Meybodi, 'Cellular edge detection: Combining cellular automata and cellular learning automata' Int. J. Electron. Commun. (AEÜ) 69 (2015) 1282–1290
- [17] Yang Oua, Dai GuangZhi, 'Color Edge Detection Based on Data Fusion Technology in Presence of Gaussian Noise' Procedia Engineering 15 (2011) 2439 – 2443
- [18] Wei-Chun Lin, Jing-Wein Wang, 'Edge detection in medical images with quasi high-pass filter based on local statistics' Biomedical Signal Processing and Control 39 (2018) 294–302
- [19] Zhengchun Lin, Jinshan Jiang, Zhiyan Wang, 'Edge detection in the feature space' Image and Vision Computing 29 (2011) 142– 154
- [20] V. Sowmya, Neethu Mohan, K.P.Soman, 'Edge Detection Using Sparse Banded Filter Matrices' Procedia Computer Science 58 (2015) 10-17
- [21] S. Uguz, U. Sahin, F. Sahin, 'Edge detection with fuzzy cellular automata transition function optimized by PSO' Computers and Electrical Engineering 43 (2015) 180–192
- [22] Suman KumarMaji, HusseinM.Yahia, 'Edges, transitions and criticality' Pattern Recognition 47(2014)2104–2115

- [23] Guowei Yang, Fengchang Xu, 'Research and analysis of Image edge detection algorithm Based on the MATLAB' Procedia Engineering 15 (2011) 1313 – 1318
- [24] Baraka Jacob Maiseli, Huijun Gao, 'Robust edge detector based on anisotropic diffusion-driven process' Information Processing Letters 116 (2016) 373–378
- [25] G.T. Shrivakshan, Dr.C. Chandrasekar, 'A Comparison of various Edge Detection Techniques used in Image Processing' IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012 ISSN (Online): 1694-0814
- [26] N. Senthilkumaran and R. Rajesh, 'Edge Detection Techniques for Image Segmentation – A Survey of Soft Computing Approaches' International Journal of Recent Trends in Engineering, Vol. 1, No. 2, May 2009