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Abstract— Data intensive applications adopts Map Reduce as a major computing model. Hadoop, an open source implementation of 

MapReduce, has been implemented by progressively increasing user community. Many Cloud computing service providers offer the chances for 

Hadoop operators to contract a certain amount of supply’s and remunerate for their usage. Nevertheless, a key contest is that cloud service 

providers do not have a supply provisioning mechanism to fulfil user works with target requirements. At present, it is solely the user's 

accountability to evaluate the required amount of supply forming a work in the cloud. This paper presents a Hadoop presentation model that 

precisely guesses completion time and further provisions the required amount of supply’s for a work to be completed within a deadline. The 

proposed model forms on past work execution records and services Locally Weighted Linear Regression (LWLR) technique to estimate the 

execution time of a work. Moreover, it pays Lagrange Multipliers technique for supply provisioning to satisfy works with deadline requirements. 

The proposed method is primarily assessed on an in-house Hadoop cluster and then evaluated in the Amazon EC2 Cloud. Experimental results 

show that the accuracy of the proposed method in work execution approximation is in the range of 90.37% and 91.28%, and works are 

completed within the required limits following on the supply provisioning scheme of the proposed model. 
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I. INTRODUCTION 

Many organizations are continuously collecting massive 

amounts of datasets from various sources such as the World 

Wide Web, sensor nets and social nets. The ability to perform 

scalable and timely analytics on these unstructured datasets is a 

high priority task for many enterprises. It has become difficult 

for traditional net storage and database systems to process these 

continuously growing datasets. MapReduce [1], originally 

developed by Google, has become a major computing model in 

support of data intensive applications. It is a highly scalable, 

fault-tolerant and data parallel model that automatically 

distributes the data and parallelizes the computation across a 

cluster of computers [2]. Among its implementations such as 

Mars[3], Phoenix[4], Dryad[5] and Hadoop [6], Hadoop has 

received a wide uptake by the community due to its open 

source nature [7][8][9][10].  

One feature of Hadoop MapReduce is its support of public 

cloud computing that enables the organizations to utilize cloud 

services in a pay-as-you-go manner. This facility is beneficial 

to small and medium size organizations where the setup of a 

large scale and complex private cloud is not feasible due to 

financial constraints. Hence, executing Hadoop MapReduce 

applications in a cloud environment for big data analytics has 

become a realistic option for both the industrial practitioners 

and academic researchers. For example, Amazon has designed 

Elastic MapReduce (EMR) that enables users to run Hadoop 

applications across its Elastic Cloud Computing (EC2) nodes.  

The EC2 Cloud makes it easier for users to set up and run 

Hadoop applications on a large-scale virtual cluster. To use the 

EC2 Cloud, users have to configure the required amount of 

supply’s (virtual nodes) for their applications. However, the 

EC2 Cloud in its current form does not support Hadoop works 

with deadline requirements. It is purely the user's responsibility 

to estimate the amount of supply’s to complete their works 

which is a highly challenging task. Hence, Hadoop presentation 

modeling has become a necessity in estimating the right 

amount of supply’s for user works with deadline requirements. 

It should be pointed out that modeling Hadoop presentation is 

challenging  because Hadoop works normally involve multiple 

processing phases including three core phases (i.e. map phase, 

shuffle phase and reduce phase). Moreover, the first wave of 

the shuffle phase is normally processed in parallel with the map 

phase (i.e. overlapping stage) and the other waves of the shuffle 

phase are processed after the map phase is completed (i.e. non-

overlapping stage). 

To effectively manage cloud supply’s, several Hadoop 

presentation models have been proposed [11][12][13][14]. 

However, these models do not consider the overlapping and 

non-overlapping stages of the shuffle phase which leads to an 

inaccurate approximation of work execution. 

Recently, a number of sophisticated Hadoop presentation 

models are proposed [15][16][17][18]. Starfish [15] collects a 

running Hadoop work profile at a fine granularity with detailed 

information for work approximation and optimization. On the 
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top of Starfish, Elasticiser [16] is proposed for supply 

provisioning in terms of virtual machines. However, collecting 

the detailed execution profile of a Hadoop work incurs a high 

overhead which leads to an overestimated work execution time. 

The HP model [17] considers both the overlapping and non-

overlapping stages and uses simple linear regression for work 

approximation. This model also estimates the amount of 

supply’s for works with deadline requirements. CRESP [18] 

estimates work execution and supports supply provisioning in 

terms of map and reduce slots. However, both the HP model 

and CRESP ignore the impact of the number of reduce tasks on 

work presentation. The HP model is restricted to a constant 

number of reduce tasks, whereas CRESP only considers a 

single wave of the reduce phase. In CRESP, the number of 

reduce tasks has to be equal to number of reduce slots. It is 

unrealistic to configure either the same number of reduce tasks 

or the single wave of the reduce phase for all the works. It can 

be argued that in practice, the number of reduce tasks varies 

depending on the size of the input dataset, the type of a Hadoop 

application (e.g. CPU intensive, or disk I/O intensive) and user 

requirements. Furthermore, for the reduce phase, using multiple 

waves generates better presentation than using a single wave 

especially when Hadoop processes a large dataset on a small 

amount of supply’s. While a single wave reduces the task setup 

overhead, multiple waves improve the utilization of the disk 

I/O. 

Building on the HP model, this paper presents an improved 

HP model for Hadoop work execution approximation and 

supply provisioning. The major contributions of this paper are 

as follows: 

 

 The improved HP mathematically models all the three 

core phases of a Hadoop work. In contrast, the HP does 

not mathematically model the non-overlapping shuffle 

phase in the first wave. 

 The improved HP model employs Locally Weighted 

Linear Regression (LWLR) technique to estimate the 

execution time of a Hadoop work with a varied number of 

reduce tasks. In contrast, the HP model employs a simple 

linear regress technique for work execution 

approximation which restricts to a constant number of 

reduce tasks. 

 Based on work execution approximation, the improved 

HP model employs Langrage Multiplier technique to 

provision the amount of supplies for a Hadoop work to 

complete within a given deadline. 

 

The presentation of the improved HP model is initially 

evaluated on an in-house Hadoop cluster and subsequently on 

Amazon EC2 Cloud. The evaluation results show that the 

improved HP model outperforms both the HP model and 

Starfish in work execution approximation with an accuracy of 

level in the range of 94.97% and 95.51%. For supply 

provisioning, 4 work scenarios are considered with a varied 

number of map slots and reduce slots.  The experimental results 

show that the improved   HP   model   is   more   economical   

in   supply provisioning than the HP model. 

The remainder of paper is organized as follows. Section II 

models work phases in Hadoop. Section III presents the 

improved HP model in work execution approximation and 

Section IV further enhances the improved HP model for supply 

provisioning. Section V first evaluates the presentation of the 

improved HP model on an in-house Hadoop cluster and 

subsequently on Amazon EC2 Cloud. Section VI discusses a 

number of related s. Finally, Section VII concludes the paper 

and points out some future . 

II.  MODELING WORK PHASES IN HADOOP 

Normally a Hadoop work execution is divided into a map 

phase and a reduce phase. The reduce phase involves data 

shuffling, data sorting and user-defined reduce functions. Data 

shuffling and sorting are performed simultaneously. Therefore, 

the reduce phase can be further divided into a shuffle (or sort) 

phase and a reduce phase performing user-defined functions. 

As a result, an overall Hadoop work execution  flow consists of 

a map phase, a shuffle phase and a reduce phase as shown in 

Fig.1. Map tasks are executed in map slots at a map phase and 

reduce tasks run in reduce slots at a reduce phase. Every task 

runs in one slot at a time. A slot is allocated with a certain 

amount of supplys in terms of CPU and RAM. A Hadoop work 

phase can be completed in a single wave or multiple waves. 

Tasks in a wave run in parallel on the assigned slots 

 

 
Herodotou presented a detailed set of mathematical models on 

Hadoop presentation at a fine granularity [19]. For the purpose 

of simplicity, we only consider the three core phases (i.e. map 

phase, shuffle phase and reduce phase) in modeling the 

presentation of Hadoop works. Table 1 defines the variables 

used in Hadoop work presentation modeling. 
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A. Modeling Map Phase 

In this phase, a Hadoop work reads an input dataset from 

Hadoop Distributed File System (HDFS), splits the input 

dataset into data chunks based on a specified size and then 

passes the data chunks to a user-define map function. The map 

function processes the data chunks and produces a map output. 

The map output is called intermediate data. The average map 

output and the total map phase execution time can be computed 

using Eq.(1) and Eq.(2) respectively 

 

 

Table 1. Defined variables in modeling work. 

 

Variables Expressions 

Doutput mavg The average output data size of a map task. 

T total m The total execution time of a map phase. 

Dinput mavg The average input data size of a map task. 

Mselectivity The map selectivity which is the ratio of a map output to a map input. 

Nm The total number of map tasks. 

T avg m The average execution time of a map task. 

N slot m The total number of configured map slots. 

Dsh avg The average size of a shuffled data. 

T total sh The total execution time of a shuffle phase. 

Nr The total number of reduce tasks. 

  The average execution duration of a shuffle task. 

T avg sh 

N slot r The total number of configured reduce slots. 

N w1 sh The total number of shuffle tasks that complete in the first wave. 

N w2 sh The total number of shuffle tasks that complete in other waves. 

T avg w1 The  average  execution  time  of  a  shuffle  task  that completes in the first wave. 

T avg w2 The  average  execution  time  of  a  shuffle  task  that completes in other waves. 

Doutput r avg The average output data size of a reduce task. 

T total r The total execution time of a reduce phase. 

Dinput r avg The average input size of a reduce task. 

Rselectivity The reduce selectivity which is the ratio of a reduce output to a reduce input. 

T avg r The average execution time of a reduce task. 

 

 
 

 

B.  Modeling Shuffle Phase 

 

In this phase, a Hadoop job fetches the intermediate data, 

sorts it and copies it to one or more reducers. The shuffle 

tasks and sort tasks are performed simultaneously, therefore, 

we generally consider them as a shuffle phase. The average 

size of shuffled data can be computed using Eq.(3). 

 

  If Nr  Nr
slot

 , then the shuffle phase will be completed in 

a single wave. The total execution time of a shuffle phase can 

be computed using Eq.(4). 

 
Otherwise, the shuffle phase will be completed in multiple 

waves and its execution time can be computed using Eq.(5). 
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C. Modeling Reduce Phase 

In this phase, a job reads the sorted intermediate data as 

input and passes to a user-defined reduce function. The reduce 

function processes the intermediate data and produces a final 

output. In general, the reduce output is written back into the 

HDFS. The average output of the reduce tasks and the total 

execution time of the reduce phase can be computed using 

Eq.(6) and Eq.(7) respectively. 

 

 

III. AN IMPROVED HP PERFORMANCE MODEL 

As also mentioned before, Hadoop jobs have three core 

execution phases – map phase, shuffle phase and reduce phase. 

The map phase and the shuffle phase can have overlapping and 

non-overlapping stages. In this section, we present an improved 

HP model which takes into account both overlapping stage and 

non-overlapping stage of the shuffle phase during the execution 

of a Hadoop job. We consider single Hadoop jobs without 

logical dependencies. 

 

A. Design Rationale 

A Hadoop job normally runs with multiple phases in a single 

wave or in multiple waves. If a job runs in a single wave then 

all the phases will be completed without overlapping stages as 

shown in Fig.2. 

However, if a job runs in multiple waves, then the job will be 

progressed through both overlapping (parallel) and non-

overlapping (sequential) stages among the phases as show in 

Fig.3. 

In the case of multiple waves, the first wave of the shuffle 

phase starts immediately after the first map task completes. 

Furthermore, the first wave of the shuffle phase continues until 

all the map tasks complete and all the intermediate data is 

shuffled and sorted. Thus, the first wave of the shuffle phase is 

progressed in parallel with the other waves of the map phase as 

shown in Fig.3. After completion of the first wave of the 

shuffle phase, the reduce tasks start running and produce output. 

Afterwards, these reduce slots will become available to the 

shuffle tasks running in other waves. It can be observed from 

Fig.3 that the shuffle phase takes longer to complete in the first 

wave than in other waves. In order to estimate the execution 

time of a job in multiple waves, we need to estimate two sets of 

parameters for the shuffle phase - the average and the 

maximum durations of the first wave, together with the average 

and the maximum durations of the other waves. Moreover, 

there is no significant difference between the durations of the 

map tasks running in non-overlapping and overlapping stages 

due to the equal size of data chunks. Therefore, we only 

estimate one set of parameters for the map phase which are the 

average and the maximum durations of the map tasks. The 

reduce tasks run in a non-overlapping stage, therefore we only 

estimate one set of parameters for the reduce phase which are 

the average and the maximum durations of the reduce tasks. 

Finally, we aggregate the durations of all the three phases to 

estimate the overall job execution time. 

 
Fig.3. A Hadoop work running in multiple waves (80 

map tasks, 32 reduce tasks). 

 

It should be pointed out that Fig.3 also shows the differences 

between the HP model and the improved model in Hadoop job 

modeling. The HP work mathematically models the whole map 

phase which includes the non-overlapping stage of the map 

phase and the stage overlapping with the shuffle phase, but it 

does not provide any mathematical equations to model the non-

overlapping stage of the shuffle phase in the first wave. 

Whereas the improved HP work mathematically models the 

non-overlapping map phase in the first wave, and the shuffle 

phase in the first wave which includes both the stage 

overlapping with the map phase and the non-overlapping stage. 
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This can be reflected in the mathematical equations of the 

improved HP model which are different from the HP model. 

 

B. Mathematical Expressions 

In this section, we present the mathematical expressions of 

the improved HP work in modeling a Hadoop job which 

completes in multiple waves. Table 2 defines the variables used 

in the improved model. 

 

Table 2. Defined variables in the improved HP model. 

Variables Expressions 

low 

The lower bound duration of the map 

phase in the 
T
mw1 first wave (non-overlapping). 

T up 

The upper bound duration of the map 

phase in the 

m w1 first wave (non-overlapping). 

w1 

The number of map tasks that complete 

in the first 

N m wave of the map phase. 

w2 

The number of map tasks that complete 

in other 

N m waves of the map phase. 

T max m 

The maximum execution time of a map 

task. 

Variables Expressions 

  

low 

The lower bound duration of the shuffle 

phase in 

T
sh w1 

the first wave (overlapping with the map 

phase). 

up 

The upper bound duration of the shuffle 

phase in 

T
sh w1 

the first wave (overlapping with the map 

phase). 

T avg 

The average execution time of a shuffle 

task that 

completes in the first wave of the shuffle 

phase. 

sh  w1  

T max 

The maximum execution time of a 

shuffle task that 

completes in the first wave of the shuffle 

phase. 

sh  w1  

T low 

The lower bound duration of the shuffle 

phase in 

other waves (non-overlapping) 

sh  w 2  

  

T up 

The upper bound duration of the shuffle 

phase in 

other waves (non-overlapping). 

sh  w 2  

T avg The average execution time of a shuffle 
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task that 

completes in other waves of the shuffle 

phase. 

sh  w2  

T max 

The maximum execution time of a 

shuffle task that 

completes in other waves of the shuffle 

phase. 

sh   w 2  

T low 

The lower bound duration of the reduce 

phase. 

r  

  

T up 

The upper bound duration of the reduce 

phase. 

r  

  

T max 

The maximum execution time of a 

reduce task. 

 

r  

  

T job
low 

The lower bound execution time of a 

Hadoop job. 

  

T job
up 

The upper bound execution time of a 

Hadoop job. 

  

T job
avg 

The average execution time of a Hadoop 

job. 

In practice, job tasks in different waves may not complete 

exactly at the same time due to varied overhead in disk I/O 

operations and network communication. Therefore, the 

improved HP model estimates the lower bound and the upper 

bound of the execution time for each phase to cover the best-

case and the worse-case scenarios respectively. 

We consider a job that runs in both non-overlapping and 

overlapping stages. The lower bound and the upper bound of 

the map phase in the first wave which is a non-overlapping 

stage can be computed using Eq.(8) and Eq.(9) respectively 

 

 
In the overlapping stage of a running job, the map phase 

overlaps with the shuffle phase. Specifically, the tasks running 

in other waves of the map phase run in parallel with the tasks 

running in the first wave of the shuffle phase. As the shuffle 

phase always completes after the map phase which means that 

the shuffle phase takes longer than the map phase, therefore we 

use the duration of the shuffle phase in the first wave to 

compute the lower bound and the upper bound of the 

overlapping stage of the job using Eq.(10) and Eq.(11) 

respectively. 

 

In other waves of the shuffle phase, the tasks run in a 

non-overlapping stage. Hence, the lower bound and the upper 

bound of the non-overlapping stage of the shuffle phase can be 

computed using Eq.(12) and Eq.(13) respectively. 
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The reduce tasks start after completion of the shuffle 

tasks.Therefore, the reduce tasks complete in a non-

overlapping stage. The lower bound and the upper bound of the 

reduce phase can be computed using Eq.(14) and Eq.(15) 

respectively. 

 

 

As a result, the lower bound and upper bound of the 

execution time of a Hadoop work can be computed by 

combining the execution durations of all the three phases using 

Eq. (16) and Eq. (17) respectively. 

 By substituting the values in Eq.(16) and Eq.(17), we have 

 

 

Finally, we take an average of Eq.(18) and Eq.(19) to 

estimate the execution time of a Hadoop work using Eq.(20). 

 
 

C. Work Execution Approximation 

In the previous section, we have presented the mathematical 

expressions of the improved HP model. The lower bound and 

the upper bound of a map phase can be computed using Eq.(8) 

and Eq.(9) respectively. However, the durations of the shuffle 

phase and the reduce phase have to be estimated based on the 

running records of a Hadoop work. 

When a job processes an increasing size of an input dataset, 

the number of map tasks is proportionally increased while the 

number of reduce tasks is specified by a user in the 

configuration file. The number of reduce tasks can vary 

depending on user's configurations. When the number of 

reduce tasks is kept constant, the execution durations of both 

the shuffle tasks and the reduce tasks are linearly increased 

with the increasing size of the input dataset as considered in the 

HP model. This is because the volume of an intermediate data 

block equals to the total volume of the generated intermediate 

data divided by the number of reduce tasks. As a result, the 

volume of an intermediate data block is also linearly increased 

with the increasing size of the input dataset. However, when 

the number of reduce tasks varies, the execution durations of 

both the shuffle tasks and the reduce tasks are not linear to the 

increasing size of an input dataset. 

In either the shuffle phase or the reduce phase, we consider 

the tasks running in both overlapping and non-overlapping 

stages. Unlike the HP model, the improved model considers a 

varied number of reduce tasks. As a result, the durations of 

both the shuffle tasks and the reduce tasks are nonlinear to the 

size of an input dataset. Therefore, instead of using a simple 

linear regression as adopted by the HP model, we apply 

Locally Weighted Linear Regression (LWLR) [20][21] in the 

improved model to estimate the execution durations of both the 

shuffle tasks and the reduce tasks. LWLR is an instance-based 

nonparametric function, which assigns a weight to each 

instance x according to its Euclidean distance from the query 

instance xq . LWLR assigns a high weight to an instance x 

which is close to the query instance xq and a low weight to the 

instances that are far away from the query instance xq . The 

weight of an instance can be computed using a Gaussian 

function as illustrated in Eq.(21). 

 
where, 

 wk is the weight of the training instance at 

location k .

 xk  is the training instance at location k .



 m is the total number of the training instances.



 h is a smoothing parameter which determines 

the width of the local neighbourhood of the 

query instance.



The value of h is crucial to LWLR. Users have the option of 

using a new value of h for each estimation or a single global 

value of h. However, finding an optimal value for h is a 

challenging issue itself [22]. In the improved HP model, a 

single global value of h is used to minimize the estimated mean 

square errors. 

In the improved HP model, LWLR is used to estimate the 

durations of both the shuffle tasks and the reduce tasks. First, 



International Journal on Future Revolution in Computer Science & Communication Engineering                                       ISSN: 2454-4248 
Volume: 3 Issue: 10                                                                                                                                                              12 – 25 

_______________________________________________________________________________________________ 

19 

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org                                                                 

_______________________________________________________________________________________ 

For the estimation of T avg ,sh-wl , we calculate the weight 

for each training instance using Eq. (21) and then 

compute the  

Parameter β using Eq. (22) which is the coefficient of LWLR. 

 

 

 

Here W = diag(Wk) is the diagonal matrix where all the non-

diagonal cells are 0 values. The value of a diagonal cell is 

increased when the distance between a training instance and the 

query instance is decreased.  

Finally, the duration of a new shuffle task running in the first 

wave of the shuffle phase can be estimated using Eq. (23). 

The estimated values of both the shuffle phase and the reduce 

phase are used in the improved HP model to estimate the 

overall execution time of a Hadoop job when processing a new 

input dataset. Fig.4 shows the overall architecture of the 

improved HP model, which summarizes the work of the 

improved HP model in job execution estimation. The boxes in 

gray represent the same work presented in the HP model. It is 

worth noting that the improved HP model works in an offline 

mode and estimates the execution time of a job based on the 

job profile. 

 
 

IV. RESOURCE PROVISIONING 

The improved HP model presented in Section III can 

estimate the execution time of a Hadoop job based on the job 

execution profile, allocated resources (i.e. map slots and reduce 

slots), and the size of an input dataset. The improved HP model 

is further enhanced to estimate the amount of resources for 

Hadoop jobs with deadline requirements 

Consider a deadline t for a job that is targeted at the lower 

bound of the execution time. To estimate the number of map 

slots and reduce slots, we consider the non-lapping map phase 

in the first wave, the map phase in other waves together with 

the overlapped shuffle phase in the first wave, the shuffle phase 

in other waves and the reduce phase. Therefore we simplify 

Eq.(18) into Eq.(24) with a modification of Eq.(10) for 

resource estimation 

 

a 

 

b 

  

c 

 

d 

  



 

   t 

 

     

     

m   m  r   r   r 

 

 

 

          

whree             

 

t  T low 

         

          

    job          

  

a  T avg  N w1 

   

    

    

m 

  m    

             

  

b  (T 
avg

  N 
w2

 )  (T 
avg 

 

 N 
w1

 )   

    

m 

   m sh  

w1 

sh 

           

              

 c  T 
avg 

  N sh
w2 

   

    sh  w2    

 d  T 
avg

  N    

    r   r    

 m  N slot          

    m          



  slot          

r  Nr          

The method of Lagrange Multipliers [23] is used to estimate 

the amounts of resources (i.e. map slots and the reduce slots) 

for a job to complete within a deadline. Lagrange Multipliers is 

an optimization technique in multivariable calculus that 

minimizes or maximizes the objective function subject to a 

constraint function. The objective function is f(m,r)=m+r  and 

the constraint function is g(m,r)=0 where g(m, r)  m
a
  m

b
 r  

c
r  

d
r  t   is derived from Eq.(24). To minimize the objective 

function, the Lagrangian function is expressed as Eq.(25). 

 

 

Where ʎ is the Lagrange Multiplier. We take partial 

differentiation of Eq.(25) with respect to m, r, ʎ, we have 
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Solving Eq.(26), Eq.(27), and Eq.(28) simultaneously for m 

and r, we have 

 
 

Here, the values of m and r are the numbers of map 

slots and reduce slots respectively. As we have targeted at the 

lower bound of the execution time of a job, the estimated 

amount of resources might not be sufficient for the job to 

complete within the deadline. This is because the lower bound 

corresponds to the best-case scenario which is hardly 

achievable in a real 

Hadoop environment. Therefore, we also target at the upper 

bound of the execution time of a job. For this purpose we use 

Eq.(19) as a constraint function in Lagrange Multipliers, and 

apply the same method as applied to Eq.(18) to compute the 

values of both m and r . In this case, the amounts of resources 

might be overestimated for a job to complete within the 

deadline. This is because the upper bound corresponds to the 

worst-case execution of a job. As a result, an average amount 

of resources between the lower and the upper bounds might be 

more sensible for resource provisioning for a job to complete 

within a deadline. 

IV. PERFORMANCE EVALUATION 

The performance of the improved HP model was initially 

evaluated on an in-house Hadoop cluster and subsequently on 

Amazon EC2 cloud. In this section, we present the evaluation 

results. First, we give a brief description on the experimental 

environments that were used in the evaluation process. 

 

A. Experimental Setup 

We set up an in-house Hadoop cluster using an Intel Xeon 

server machine. The specifications and configurations of the 

server are shown in Table 3. We installed Oracle Virtual Box 

and configured 8 Virtual Machines (VMs) on the server. Each 

VM was assigned with 4 CPU cores, 8GB RAM and 150GB 

hard disk storage. We used Hadoop-1.2.1 and configured one 

VM as the Name Node and the remaining 7 VMs as Data 

Nodes. The Name Node was also used as a Data Node. The 

data block size of the HDFS was set to 64MB and the 

replication level of data block was set to 2. Two map slots and 

two reduce slots were configured on each VM. We employed 

two typical MapReduce applications, i.e. the WordCount 

application and the Sort application which are CPU intensive 

and IO intensive applications respectively. The teraGen 

application was used to generate input datasets of different 

sizes. 

The second experimental Hadoop cluster was setup on 

Amazon EC2 Cloud using 20 m1.large instances. The 

specifications of the m1.large are shown in Table 3. In this 

cluster, we used Hadoop-1.2.1 and configured one instance as 

Name Node and other 19 instances as Data Nodes. The Name 

Node was also used as a Data Node. The data block size of the 

HDFS was set to 64MB and the replication level of data block 

was set to 3. Each instance was configured with one map slot 

and one reduce slot. 

 

Table 3: Experimental Hadoop cluster. 

 CPU 40 cores 

 Processor 2.27GHz 

Intel Xeon Server 

1 Hard disk 2TB 

 Connectivity 

100Mbps Ethernet 

LAN 

 Memory 128GB 

Amazon 

vCPU 2 

Hard disk 420GB 

m1.large instance 

Memory 7.5GB  

 Operating System Ubuntu 12.04 TLS 

 JDK 1.6 

Software Hadoop 1.2.1 

 

Oracle Virtual 

Box 4.2.8 

 Starfish 0.3.0 

 

B. Job Profile Information 

We run both the WordCount and the Sort applications on 

the two Hadoop clusters respectively and employed Starfish 

to collect the job profiles. For each application running on 

each cluster, we conducted 10 tests. For each test, we run 5 

times and took the average durations of the phases. Table 4 

and Table 5 present the job profiles of the two applications 

that run on the EC2 Cloud. 
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C. Evaluating the Impact of the Number of Reduce 

Tasks on Job Performance 

In this section we evaluate the impact of the number of 

reduce tasks on job performance. We run both the 

WordCount and the Sort applications on the in-house 

Hadoop cluster with a varied number of reduce tasks. The 

experimental results are shown in Fig.5 and Fig.6 

respectively. For both applications, it can be observed that 

when the size of the input dataset is small (e.g. 10GB), 

using a small number of reduce tasks (e.g. 16) generates 

less execution time than the case of using a large number of 

reduce tasks (e.g. 64). However, when the size of the input 

dataset is large (e.g. 25GB), using a large number of reduce 

tasks 

 

 

Table 4: The job profile of the WordCount application in EC2 environment. 

Data 

 Map 

task 

 

Shuffle 

duration(s) 

Shuffle 

duration(s) Red

uce 

 

Map 

 in the first 

wave 

in other 

waves 

 

size 

duration 

(s) 

duration 

(s) 

task

s 

(overlap

ping) 

 (non-

overlapping

) (GB)        

  

Avg

.  

Ma

x Avg.  Max Avg. Max 

Av

g.  Max 

5 80 12  23 69  73 20 22 18  25 

             

10 160 12  24 139  143 26 29 20  32 

             

15 240 13  23 212  215 38 44 23  35 

             

20 320 13  23 274  278 34 39 17  26 

             

25 400 11  25 346  350 41 47 20  27 

             

30 480 11  24 408  411 47 57 22  41 

             

35 560 12  27 486  489 59 71 27  42 

             

40 640 12  24 545  549 45 52 19  30 

             

45 720 11  23 625  629 50 58 20  32 

             

50 800 14  24 693  696 55 65 23  37 

             

 

Table 5: The profile of the Sort application in EC2 environment. 

  Map 

task 

 

Shuffle 

duration(s) 

Shuffle 

duration(s) Red

uce 

 

Data 

  in the first 

wave 

in other 

waves 

 

Map 

duration 

(s) 

duration 

(s) 

Size 

(overlap

ping) 

 (non-

overlapping) task

s 

       

(GB

) 

           

 Avg

. 

 M 

Avg. 

 Ma

x Avg. Max 

Av

g. 

 

Max    

ax 
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5 80 11  15 48  50 15 18 13  24 

             

10 160 12  24 108  111 23 32 30  42 

             

15 240 12  20 161  165 31 41 50  68 

             

20 320 12  22 218  221 29 35 44  63 

             

25 400 13  22 277  281 37 63 57  73 

             

30 480 13  33 325  330 42 56 75  112 

             

35 560 12  27 375  378 55 82 87  132 

             

40 640 13  26 424  428 52 74 71  104 

             

45 720 13  26 484  488 63 94 97  128 

             

50 800 13  29 537  541 71 102 104  144 

             

 

 (e.g. 64) generates less execution time than the case of using 

a small number of reduce tasks (e.g. 16). It can also be 

observed that when the size of the input dataset is small (e.g. 

10GB or 15GB), using a single wave of reduce tasks (i.e. the 

number of reduce tasks is equal to the number of reduce slots 

which is 16) performs better than the case of using multiple 

waves of reduce tasks (i.e. the number of reduce tasks is larger 

than the number of reduce slots). However, when the size of 

the input dataset is large (e.g. 25GB), both the WordCount and 

the Sort applications perform better in the case of using 

multiple waves of reduce tasks than the case of using a single 

wave of reduce tasks. While a single wave reduces the task 

setup overhead on a small dataset, multiple waves improve the 

utilization of the disk I/O on a large dataset. As a result, the 

number of reduce tasks affects the performance of a Hadoop 

application. 

 
 

 

 
 

D. Estimating the Execution Times of Shuffle Tasks and Reduce 

Tasks 

Both the WordCount and the Sort applications 

processed a dataset on the in-house Hadoop cluster with a 

varied number of reduce tasks from 32 to 64. The size of the 

dataset was varied from 2GB to 20GB. Both applications also 

processed another dataset from 5GB to 50GB on the EC2 

Cloud with the number of reduce tasks varying from 40 to 80. 

The LWLR regression model presented in Section III.C was 

employed to estimate the execution times of both the shuffle 

tasks and the reduce tasks of a new job. The estimated values 

were used in Eq.(18) and Eq.(19) to estimate the overall job 

execution time. 

Fig.7 and Fig.8 show respectively the estimated 

execution times of both the shuffle tasks and the reduce tasks 

for both applications running on the Hadoop cluster in EC2. 

Similar evaluation results were obtained from both applications 
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running on the in-house Hadoop cluster. We can observe that 

the execution times of both the shuffle tasks (non-overlapping 

stage) and reduce tasks are not linear to the size of an input 

dataset. It should be noted that the execution times of the 

shuffle tasks that run in an overlapping stage are linear to the 

size of an input dataset because the durations of these tasks 

depend on the number of map waves, as shown in Table 4 and 

Table 5. 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Job Execution Estimation 

A number of experiments were carried out on both the 

in-house Hadoop cluster and the EC2 Cloud to evaluate the 

performance of the improved HP model. First, we evaluated the 

performance of the improved HP model on the in-house cluster 

and subsequently evaluated the performance of the model on 

the EC2 Cloud. For the in-house cluster, the experimental 

results obtained from both the WordCount and the Sort 

applications are shown in Fig.9 and Fig.10 respectively. From 

these two figures we can observe that the improved HP model 

outperforms the HP model in both applications. The overall 

accuracy of the improved HP model in job estimation is within 

95% compared with the actual job execution times, whereas the 

overall accuracy of the HP model is less than 89% which uses a 

simple linear regression. It is worth noting that the HP model 

does not generate a straight line in performance as shown in 

[17]. This is because a varied number of reduce tasks was used 

in the tests whereas the work presented in [17] used a constant 

number of reduce tasks 

 
 

The overall accuracy of the improved HP model in job 

estimation is over 94% compared with the actual job execution 

times, whereas the overall accuracy of the HP model is less 

than 87%. The HP model performs better on small datasets but 

its accuracy level is decreased to 77.15% when the dataset is 

large (e.g. 40GB). The reason is that the HP model employs a 
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simple linear regression which cannot accurately estimate the 

execution times of the shuffle tasks and the reduce tasks which 

are not linear to the size of an input dataset. 

Finally, we compared the performance of the improved HP 

model in job estimation with that of both Starfish and the HP 

model collectively.It can be observed that the improved HP 

model produces the best results in job estimation for both 

applications. Starfish performs better than the HP model on the 

Sort application. This is mainly due to the high overhead of 

Starfish in collecting a large set of profile information of a 

running job. The Starfish profiler generates a high overhead for 

CPU intensive applications like WordCount because the 

Starfish uses Btrace to collect job profiles which requires 

additional CPU cycles [16]. Starfish performs better on the Sort 

application because Sort is less CPU-intensive than the 

WordCount application. 

We have validated the LWLR regression model in job 

execution estimation using 10-fold cross validation technique. 

We considered the execution of an entire job with three phases 

(i.e. map phase, shuffle phase and reduce phase). The mean 

absolute percentage errors of the WordCount application and 

the Sort application are 2.27% and 1.79% respectively which 

show high generalizability of the LWLR in job execution 

estimation. Furthermore, the R-squared values of the two 

applications are 0.9986 and 0.9979 respectively which reflects 

the goodness of fit of LWLR. 

 

F. Resource Provisioning 

In this section, we present the evaluation results of the 

improved HP model in resource provisioning using the in-

house Hadoop cluster. We considered 4 scenarios as shown in 

Table 6. The intention of varying the number of both map slots 

and reduce slots from 1 to 4 was twofold. One was to evaluate 

the impact of the resources available on the performance of the 

improved HP model in resource estimation. The other was to 

evaluate the performance of the Hadoop cluster in resource 

utilization with a varied number of map and reduce slots. 

Table 6: Scenario configurations. 

Scenarios Number of 

map slots on 

each VM 

Number of reduce 

slots on each VM 

1 1 1 
2 2 2 
3 3 6 
4 4 8 

  

    To compare the performance of the improved HP model with 

the HP model in resource estimation in the 4 scenarios, we 

employed the WordCount application as a Hadoop job 

processing 9.41GB input dataset. In each scenario, we set 7 

completion deadlines for the job which are 920, 750, 590, 500, 

450, 390 and 350 in seconds. We first built a job profile in each 

scenario.         We set a deadline for the job, and employed both 

the HP model and the improved HP model to estimate the 

amount 

of resources (i.e. the number of map slots and the number of 

reduce slots). We then assigned the estimated resources to the 

job using the in-house Hadoop cluster and measured the actual 

upper bound and the lower bound execution durations. We took 

an average of an upper bound and a lower bound and compared 

it with the given deadline. It should be noted that for resource 

provisioning experiments we configured 16VMs to satisfy the 

requirement of a job. Therefore, we employed another Xeon 

server machine with the same specification of the first server as 

shown in Table 3. We installed the Oracle Virtual Box and 

configured 8 VMs on the second server.  

 

VI. RELATED WORK 

Hadoop performance modeling is an emerging topic that 

deals with job optimization, scheduling, estimation and 

resource provisioning. Recently this topic has received a great 

attention from the research community and a number of models 

have been proposed. 

Kadirvel et al. [27] proposed Machine Learning (ML) 

techniques to predict the performance of Hadoop jobs. 

However, this work does not have a comprehensive 

mathematical model for job estimation. Lin et al. [11] proposed 

a cost vector which contains the cost of disk I/O, network 

traffic, computational complexity, CPU and internal sort. The 

later work [12] considers resource contention and tasks failure 

situations. A simulator is employed to evaluate the 

effectiveness of the model. However, simulator base 

approaches are potentially error-prone because it is challenging 

to design an accurate simulator that can comprehensively 

simulate the internal dynamics of complex MapReduce 

applications. 

 The HP model [17] extends the ARIA mode by adding 

scaling factors to estimate the job execution time on larger 

datasets using a simple linear regression. The work presented in 

[31] divides the map phase and reduce phase into six generic 

sub-phases (i.e. read, collect, spill, merge, shuffle and write), 

and uses a regression technique to estimate the durations of 

these sub-phases. It should be pointed out that the 

aforementioned models are limited to the case that they only 

consider a constant number of the reduce tasks. As a result, the 

impact of the number of reduce tasks on the performance of a 

Hadoop job is ignored. The improved HP model considers a 

varied number of reduce tasks and employs a sophisticated 

LWLR technique to estimate the overall execution time of a 

Hadoop job. 

 

VII. CONCLUSION 

Running a MapReduce Hadoop job on a public cloud such 

as Amazon EC2 necessitates a performance model to estimate 

the job execution time and further to provision a certain amount 

of resources for the job to complete within a given deadline. 

This paper has presented an improved HP model to achieve this 

goal taking into account multiple waves of the shuffle phase of 
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a Hadoop job. The improved HP model was initially evaluated 

on an in-house Hadoop cluster and subsequently evaluated on 

the EC2 Cloud. The experimental results showed that the 

improved HP model outperforms both Starfish and the HP 

model in job execution estimation. Similar to the HP model, the 

improved HP model provisions resources for Hadoop jobs with 

deadline requirements. However, the improved HP model is 

more economical in resource provisioning than the HP model. 

One future work would be to consider dynamic overhead of the 

VMs involved in running the user jobs to minimize resource 

over-provisioning. Interactions among HDD, CPU & Load 

Generator further improved by using a better mathematical 

model.  
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