
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

12

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

Modelling of Map Reduce Performance for Work Control and Supply

Provisioning

Palson Kennedy.R*

CSE&PERIIT, Anna University,

Chennai

palsonkennedyr@yahoo.co.in

Kalyana Sundaram.N

IT & Vels University

hereiskalyan@yahoo.com

Karthik V

CSE & PERIIT, Anna University,

Chennai

svkarthik86@gmail.com

Abstract— Data intensive applications adopts Map Reduce as a major computing model. Hadoop, an open source implementation of

MapReduce, has been implemented by progressively increasing user community. Many Cloud computing service providers offer the chances for

Hadoop operators to contract a certain amount of supply’s and remunerate for their usage. Nevertheless, a key contest is that cloud service

providers do not have a supply provisioning mechanism to fulfil user works with target requirements. At present, it is solely the user's

accountability to evaluate the required amount of supply forming a work in the cloud. This paper presents a Hadoop presentation model that

precisely guesses completion time and further provisions the required amount of supply’s for a work to be completed within a deadline. The

proposed model forms on past work execution records and services Locally Weighted Linear Regression (LWLR) technique to estimate the

execution time of a work. Moreover, it pays Lagrange Multipliers technique for supply provisioning to satisfy works with deadline requirements.

The proposed method is primarily assessed on an in-house Hadoop cluster and then evaluated in the Amazon EC2 Cloud. Experimental results

show that the accuracy of the proposed method in work execution approximation is in the range of 90.37% and 91.28%, and works are

completed within the required limits following on the supply provisioning scheme of the proposed model.

Keywords—Cloud computing, Hadoop Map Reduce, Performance modelling, work calculation, source provisioning

__*****___

I. INTRODUCTION

Many organizations are continuously collecting massive

amounts of datasets from various sources such as the World

Wide Web, sensor nets and social nets. The ability to perform

scalable and timely analytics on these unstructured datasets is a

high priority task for many enterprises. It has become difficult

for traditional net storage and database systems to process these

continuously growing datasets. MapReduce [1], originally

developed by Google, has become a major computing model in

support of data intensive applications. It is a highly scalable,

fault-tolerant and data parallel model that automatically

distributes the data and parallelizes the computation across a

cluster of computers [2]. Among its implementations such as

Mars[3], Phoenix[4], Dryad[5] and Hadoop [6], Hadoop has

received a wide uptake by the community due to its open

source nature [7][8][9][10].

One feature of Hadoop MapReduce is its support of public

cloud computing that enables the organizations to utilize cloud

services in a pay-as-you-go manner. This facility is beneficial

to small and medium size organizations where the setup of a

large scale and complex private cloud is not feasible due to

financial constraints. Hence, executing Hadoop MapReduce

applications in a cloud environment for big data analytics has

become a realistic option for both the industrial practitioners

and academic researchers. For example, Amazon has designed

Elastic MapReduce (EMR) that enables users to run Hadoop

applications across its Elastic Cloud Computing (EC2) nodes.

The EC2 Cloud makes it easier for users to set up and run

Hadoop applications on a large-scale virtual cluster. To use the

EC2 Cloud, users have to configure the required amount of

supply’s (virtual nodes) for their applications. However, the

EC2 Cloud in its current form does not support Hadoop works

with deadline requirements. It is purely the user's responsibility

to estimate the amount of supply’s to complete their works

which is a highly challenging task. Hence, Hadoop presentation

modeling has become a necessity in estimating the right

amount of supply’s for user works with deadline requirements.

It should be pointed out that modeling Hadoop presentation is

challenging because Hadoop works normally involve multiple

processing phases including three core phases (i.e. map phase,

shuffle phase and reduce phase). Moreover, the first wave of

the shuffle phase is normally processed in parallel with the map

phase (i.e. overlapping stage) and the other waves of the shuffle

phase are processed after the map phase is completed (i.e. non-

overlapping stage).

To effectively manage cloud supply’s, several Hadoop

presentation models have been proposed [11][12][13][14].

However, these models do not consider the overlapping and

non-overlapping stages of the shuffle phase which leads to an

inaccurate approximation of work execution.

Recently, a number of sophisticated Hadoop presentation

models are proposed [15][16][17][18]. Starfish [15] collects a

running Hadoop work profile at a fine granularity with detailed

information for work approximation and optimization. On the

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

13

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

top of Starfish, Elasticiser [16] is proposed for supply

provisioning in terms of virtual machines. However, collecting

the detailed execution profile of a Hadoop work incurs a high

overhead which leads to an overestimated work execution time.

The HP model [17] considers both the overlapping and non-

overlapping stages and uses simple linear regression for work

approximation. This model also estimates the amount of

supply’s for works with deadline requirements. CRESP [18]

estimates work execution and supports supply provisioning in

terms of map and reduce slots. However, both the HP model

and CRESP ignore the impact of the number of reduce tasks on

work presentation. The HP model is restricted to a constant

number of reduce tasks, whereas CRESP only considers a

single wave of the reduce phase. In CRESP, the number of

reduce tasks has to be equal to number of reduce slots. It is

unrealistic to configure either the same number of reduce tasks

or the single wave of the reduce phase for all the works. It can

be argued that in practice, the number of reduce tasks varies

depending on the size of the input dataset, the type of a Hadoop

application (e.g. CPU intensive, or disk I/O intensive) and user

requirements. Furthermore, for the reduce phase, using multiple

waves generates better presentation than using a single wave

especially when Hadoop processes a large dataset on a small

amount of supply’s. While a single wave reduces the task setup

overhead, multiple waves improve the utilization of the disk

I/O.

Building on the HP model, this paper presents an improved

HP model for Hadoop work execution approximation and

supply provisioning. The major contributions of this paper are

as follows:

 The improved HP mathematically models all the three

core phases of a Hadoop work. In contrast, the HP does

not mathematically model the non-overlapping shuffle

phase in the first wave.

 The improved HP model employs Locally Weighted

Linear Regression (LWLR) technique to estimate the

execution time of a Hadoop work with a varied number of

reduce tasks. In contrast, the HP model employs a simple

linear regress technique for work execution

approximation which restricts to a constant number of

reduce tasks.

 Based on work execution approximation, the improved

HP model employs Langrage Multiplier technique to

provision the amount of supplies for a Hadoop work to

complete within a given deadline.

The presentation of the improved HP model is initially

evaluated on an in-house Hadoop cluster and subsequently on

Amazon EC2 Cloud. The evaluation results show that the

improved HP model outperforms both the HP model and

Starfish in work execution approximation with an accuracy of

level in the range of 94.97% and 95.51%. For supply

provisioning, 4 work scenarios are considered with a varied

number of map slots and reduce slots. The experimental results

show that the improved HP model is more economical

in supply provisioning than the HP model.

The remainder of paper is organized as follows. Section II

models work phases in Hadoop. Section III presents the

improved HP model in work execution approximation and

Section IV further enhances the improved HP model for supply

provisioning. Section V first evaluates the presentation of the

improved HP model on an in-house Hadoop cluster and

subsequently on Amazon EC2 Cloud. Section VI discusses a

number of related s. Finally, Section VII concludes the paper

and points out some future .

II. MODELING WORK PHASES IN HADOOP

Normally a Hadoop work execution is divided into a map

phase and a reduce phase. The reduce phase involves data

shuffling, data sorting and user-defined reduce functions. Data

shuffling and sorting are performed simultaneously. Therefore,

the reduce phase can be further divided into a shuffle (or sort)

phase and a reduce phase performing user-defined functions.

As a result, an overall Hadoop work execution flow consists of

a map phase, a shuffle phase and a reduce phase as shown in

Fig.1. Map tasks are executed in map slots at a map phase and

reduce tasks run in reduce slots at a reduce phase. Every task

runs in one slot at a time. A slot is allocated with a certain

amount of supplys in terms of CPU and RAM. A Hadoop work

phase can be completed in a single wave or multiple waves.

Tasks in a wave run in parallel on the assigned slots

Herodotou presented a detailed set of mathematical models on

Hadoop presentation at a fine granularity [19]. For the purpose

of simplicity, we only consider the three core phases (i.e. map

phase, shuffle phase and reduce phase) in modeling the

presentation of Hadoop works. Table 1 defines the variables

used in Hadoop work presentation modeling.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

14

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

A. Modeling Map Phase

In this phase, a Hadoop work reads an input dataset from

Hadoop Distributed File System (HDFS), splits the input

dataset into data chunks based on a specified size and then

passes the data chunks to a user-define map function. The map

function processes the data chunks and produces a map output.

The map output is called intermediate data. The average map

output and the total map phase execution time can be computed

using Eq.(1) and Eq.(2) respectively

Table 1. Defined variables in modeling work.

Variables Expressions

Doutput mavg The average output data size of a map task.

T total m The total execution time of a map phase.

Dinput mavg The average input data size of a map task.

Mselectivity The map selectivity which is the ratio of a map output to a map input.

Nm The total number of map tasks.

T avg m The average execution time of a map task.

N slot m The total number of configured map slots.

Dsh avg The average size of a shuffled data.

T total sh The total execution time of a shuffle phase.

Nr The total number of reduce tasks.

 The average execution duration of a shuffle task.

T avg sh

N slot r The total number of configured reduce slots.

N w1 sh The total number of shuffle tasks that complete in the first wave.

N w2 sh The total number of shuffle tasks that complete in other waves.

T avg w1 The average execution time of a shuffle task that completes in the first wave.

T avg w2 The average execution time of a shuffle task that completes in other waves.

Doutput r avg The average output data size of a reduce task.

T total r The total execution time of a reduce phase.

Dinput r avg The average input size of a reduce task.

Rselectivity The reduce selectivity which is the ratio of a reduce output to a reduce input.

T avg r The average execution time of a reduce task.

B. Modeling Shuffle Phase

In this phase, a Hadoop job fetches the intermediate data,

sorts it and copies it to one or more reducers. The shuffle

tasks and sort tasks are performed simultaneously, therefore,

we generally consider them as a shuffle phase. The average

size of shuffled data can be computed using Eq.(3).

 If Nr Nr
slot

 , then the shuffle phase will be completed in

a single wave. The total execution time of a shuffle phase can

be computed using Eq.(4).

Otherwise, the shuffle phase will be completed in multiple

waves and its execution time can be computed using Eq.(5).

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

15

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

C. Modeling Reduce Phase

In this phase, a job reads the sorted intermediate data as

input and passes to a user-defined reduce function. The reduce

function processes the intermediate data and produces a final

output. In general, the reduce output is written back into the

HDFS. The average output of the reduce tasks and the total

execution time of the reduce phase can be computed using

Eq.(6) and Eq.(7) respectively.

III. AN IMPROVED HP PERFORMANCE MODEL

As also mentioned before, Hadoop jobs have three core

execution phases – map phase, shuffle phase and reduce phase.

The map phase and the shuffle phase can have overlapping and

non-overlapping stages. In this section, we present an improved

HP model which takes into account both overlapping stage and

non-overlapping stage of the shuffle phase during the execution

of a Hadoop job. We consider single Hadoop jobs without

logical dependencies.

A. Design Rationale

A Hadoop job normally runs with multiple phases in a single

wave or in multiple waves. If a job runs in a single wave then

all the phases will be completed without overlapping stages as

shown in Fig.2.

However, if a job runs in multiple waves, then the job will be

progressed through both overlapping (parallel) and non-

overlapping (sequential) stages among the phases as show in

Fig.3.

In the case of multiple waves, the first wave of the shuffle

phase starts immediately after the first map task completes.

Furthermore, the first wave of the shuffle phase continues until

all the map tasks complete and all the intermediate data is

shuffled and sorted. Thus, the first wave of the shuffle phase is

progressed in parallel with the other waves of the map phase as

shown in Fig.3. After completion of the first wave of the

shuffle phase, the reduce tasks start running and produce output.

Afterwards, these reduce slots will become available to the

shuffle tasks running in other waves. It can be observed from

Fig.3 that the shuffle phase takes longer to complete in the first

wave than in other waves. In order to estimate the execution

time of a job in multiple waves, we need to estimate two sets of

parameters for the shuffle phase - the average and the

maximum durations of the first wave, together with the average

and the maximum durations of the other waves. Moreover,

there is no significant difference between the durations of the

map tasks running in non-overlapping and overlapping stages

due to the equal size of data chunks. Therefore, we only

estimate one set of parameters for the map phase which are the

average and the maximum durations of the map tasks. The

reduce tasks run in a non-overlapping stage, therefore we only

estimate one set of parameters for the reduce phase which are

the average and the maximum durations of the reduce tasks.

Finally, we aggregate the durations of all the three phases to

estimate the overall job execution time.

Fig.3. A Hadoop work running in multiple waves (80

map tasks, 32 reduce tasks).

It should be pointed out that Fig.3 also shows the differences

between the HP model and the improved model in Hadoop job

modeling. The HP work mathematically models the whole map

phase which includes the non-overlapping stage of the map

phase and the stage overlapping with the shuffle phase, but it

does not provide any mathematical equations to model the non-

overlapping stage of the shuffle phase in the first wave.

Whereas the improved HP work mathematically models the

non-overlapping map phase in the first wave, and the shuffle

phase in the first wave which includes both the stage

overlapping with the map phase and the non-overlapping stage.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

16

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

This can be reflected in the mathematical equations of the

improved HP model which are different from the HP model.

B. Mathematical Expressions

In this section, we present the mathematical expressions of

the improved HP work in modeling a Hadoop job which

completes in multiple waves. Table 2 defines the variables used

in the improved model.

Table 2. Defined variables in the improved HP model.

Variables Expressions

low

The lower bound duration of the map

phase in the
T
mw1 first wave (non-overlapping).

T up

The upper bound duration of the map

phase in the

m w1 first wave (non-overlapping).

w1

The number of map tasks that complete

in the first

N m wave of the map phase.

w2

The number of map tasks that complete

in other

N m waves of the map phase.

T max m

The maximum execution time of a map

task.

Variables Expressions

low

The lower bound duration of the shuffle

phase in

T
sh w1

the first wave (overlapping with the map

phase).

up

The upper bound duration of the shuffle

phase in

T
sh w1

the first wave (overlapping with the map

phase).

T avg

The average execution time of a shuffle

task that

completes in the first wave of the shuffle

phase.

sh w1

T max

The maximum execution time of a

shuffle task that

completes in the first wave of the shuffle

phase.

sh w1

T low

The lower bound duration of the shuffle

phase in

other waves (non-overlapping)

sh w 2

T up

The upper bound duration of the shuffle

phase in

other waves (non-overlapping).

sh w 2

T avg The average execution time of a shuffle

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

17

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

task that

completes in other waves of the shuffle

phase.

sh w2

T max

The maximum execution time of a

shuffle task that

completes in other waves of the shuffle

phase.

sh w 2

T low

The lower bound duration of the reduce

phase.

r

T up

The upper bound duration of the reduce

phase.

r

T max

The maximum execution time of a

reduce task.

r

T job
low

The lower bound execution time of a

Hadoop job.

T job
up

The upper bound execution time of a

Hadoop job.

T job
avg

The average execution time of a Hadoop

job.

In practice, job tasks in different waves may not complete

exactly at the same time due to varied overhead in disk I/O

operations and network communication. Therefore, the

improved HP model estimates the lower bound and the upper

bound of the execution time for each phase to cover the best-

case and the worse-case scenarios respectively.

We consider a job that runs in both non-overlapping and

overlapping stages. The lower bound and the upper bound of

the map phase in the first wave which is a non-overlapping

stage can be computed using Eq.(8) and Eq.(9) respectively

In the overlapping stage of a running job, the map phase

overlaps with the shuffle phase. Specifically, the tasks running

in other waves of the map phase run in parallel with the tasks

running in the first wave of the shuffle phase. As the shuffle

phase always completes after the map phase which means that

the shuffle phase takes longer than the map phase, therefore we

use the duration of the shuffle phase in the first wave to

compute the lower bound and the upper bound of the

overlapping stage of the job using Eq.(10) and Eq.(11)

respectively.

In other waves of the shuffle phase, the tasks run in a

non-overlapping stage. Hence, the lower bound and the upper

bound of the non-overlapping stage of the shuffle phase can be

computed using Eq.(12) and Eq.(13) respectively.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

18

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

The reduce tasks start after completion of the shuffle

tasks.Therefore, the reduce tasks complete in a non-

overlapping stage. The lower bound and the upper bound of the

reduce phase can be computed using Eq.(14) and Eq.(15)

respectively.

As a result, the lower bound and upper bound of the

execution time of a Hadoop work can be computed by

combining the execution durations of all the three phases using

Eq. (16) and Eq. (17) respectively.

 By substituting the values in Eq.(16) and Eq.(17), we have

Finally, we take an average of Eq.(18) and Eq.(19) to

estimate the execution time of a Hadoop work using Eq.(20).

C. Work Execution Approximation

In the previous section, we have presented the mathematical

expressions of the improved HP model. The lower bound and

the upper bound of a map phase can be computed using Eq.(8)

and Eq.(9) respectively. However, the durations of the shuffle

phase and the reduce phase have to be estimated based on the

running records of a Hadoop work.

When a job processes an increasing size of an input dataset,

the number of map tasks is proportionally increased while the

number of reduce tasks is specified by a user in the

configuration file. The number of reduce tasks can vary

depending on user's configurations. When the number of

reduce tasks is kept constant, the execution durations of both

the shuffle tasks and the reduce tasks are linearly increased

with the increasing size of the input dataset as considered in the

HP model. This is because the volume of an intermediate data

block equals to the total volume of the generated intermediate

data divided by the number of reduce tasks. As a result, the

volume of an intermediate data block is also linearly increased

with the increasing size of the input dataset. However, when

the number of reduce tasks varies, the execution durations of

both the shuffle tasks and the reduce tasks are not linear to the

increasing size of an input dataset.

In either the shuffle phase or the reduce phase, we consider

the tasks running in both overlapping and non-overlapping

stages. Unlike the HP model, the improved model considers a

varied number of reduce tasks. As a result, the durations of

both the shuffle tasks and the reduce tasks are nonlinear to the

size of an input dataset. Therefore, instead of using a simple

linear regression as adopted by the HP model, we apply

Locally Weighted Linear Regression (LWLR) [20][21] in the

improved model to estimate the execution durations of both the

shuffle tasks and the reduce tasks. LWLR is an instance-based

nonparametric function, which assigns a weight to each

instance x according to its Euclidean distance from the query

instance xq . LWLR assigns a high weight to an instance x

which is close to the query instance xq and a low weight to the

instances that are far away from the query instance xq . The

weight of an instance can be computed using a Gaussian

function as illustrated in Eq.(21).

where,

 wk is the weight of the training instance at

location k .

 xk is the training instance at location k .

 m is the total number of the training instances.

 h is a smoothing parameter which determines

the width of the local neighbourhood of the

query instance.

The value of h is crucial to LWLR. Users have the option of

using a new value of h for each estimation or a single global

value of h. However, finding an optimal value for h is a

challenging issue itself [22]. In the improved HP model, a

single global value of h is used to minimize the estimated mean

square errors.

In the improved HP model, LWLR is used to estimate the

durations of both the shuffle tasks and the reduce tasks. First,

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

19

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

For the estimation of T avg ,sh-wl , we calculate the weight

for each training instance using Eq. (21) and then

compute the

Parameter β using Eq. (22) which is the coefficient of LWLR.

Here W = diag(Wk) is the diagonal matrix where all the non-

diagonal cells are 0 values. The value of a diagonal cell is

increased when the distance between a training instance and the

query instance is decreased.

Finally, the duration of a new shuffle task running in the first

wave of the shuffle phase can be estimated using Eq. (23).

The estimated values of both the shuffle phase and the reduce

phase are used in the improved HP model to estimate the

overall execution time of a Hadoop job when processing a new

input dataset. Fig.4 shows the overall architecture of the

improved HP model, which summarizes the work of the

improved HP model in job execution estimation. The boxes in

gray represent the same work presented in the HP model. It is

worth noting that the improved HP model works in an offline

mode and estimates the execution time of a job based on the

job profile.

IV. RESOURCE PROVISIONING

The improved HP model presented in Section III can

estimate the execution time of a Hadoop job based on the job

execution profile, allocated resources (i.e. map slots and reduce

slots), and the size of an input dataset. The improved HP model

is further enhanced to estimate the amount of resources for

Hadoop jobs with deadline requirements

Consider a deadline t for a job that is targeted at the lower

bound of the execution time. To estimate the number of map

slots and reduce slots, we consider the non-lapping map phase

in the first wave, the map phase in other waves together with

the overlapped shuffle phase in the first wave, the shuffle phase

in other waves and the reduce phase. Therefore we simplify

Eq.(18) into Eq.(24) with a modification of Eq.(10) for

resource estimation

a

b

c

d

 t

m m r r r

whree

t T low

 job

a T avg N w1

m

 m

b (T
avg

 N
w2

) (T
avg

 N
w1

)

m

 m sh

w1

sh

 c T
avg

 N sh
w2

 sh w2

 d T
avg

 N

 r r

 m N slot

 m

 slot

r Nr

The method of Lagrange Multipliers [23] is used to estimate

the amounts of resources (i.e. map slots and the reduce slots)

for a job to complete within a deadline. Lagrange Multipliers is

an optimization technique in multivariable calculus that

minimizes or maximizes the objective function subject to a

constraint function. The objective function is f(m,r)=m+r and

the constraint function is g(m,r)=0 where g(m, r) m
a
 m

b
 r

c
r

d
r t is derived from Eq.(24). To minimize the objective

function, the Lagrangian function is expressed as Eq.(25).

Where ʎ is the Lagrange Multiplier. We take partial

differentiation of Eq.(25) with respect to m, r, ʎ, we have

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

20

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

Solving Eq.(26), Eq.(27), and Eq.(28) simultaneously for m

and r, we have

Here, the values of m and r are the numbers of map

slots and reduce slots respectively. As we have targeted at the

lower bound of the execution time of a job, the estimated

amount of resources might not be sufficient for the job to

complete within the deadline. This is because the lower bound

corresponds to the best-case scenario which is hardly

achievable in a real

Hadoop environment. Therefore, we also target at the upper

bound of the execution time of a job. For this purpose we use

Eq.(19) as a constraint function in Lagrange Multipliers, and

apply the same method as applied to Eq.(18) to compute the

values of both m and r . In this case, the amounts of resources

might be overestimated for a job to complete within the

deadline. This is because the upper bound corresponds to the

worst-case execution of a job. As a result, an average amount

of resources between the lower and the upper bounds might be

more sensible for resource provisioning for a job to complete

within a deadline.

IV. PERFORMANCE EVALUATION

The performance of the improved HP model was initially

evaluated on an in-house Hadoop cluster and subsequently on

Amazon EC2 cloud. In this section, we present the evaluation

results. First, we give a brief description on the experimental

environments that were used in the evaluation process.

A. Experimental Setup

We set up an in-house Hadoop cluster using an Intel Xeon

server machine. The specifications and configurations of the

server are shown in Table 3. We installed Oracle Virtual Box

and configured 8 Virtual Machines (VMs) on the server. Each

VM was assigned with 4 CPU cores, 8GB RAM and 150GB

hard disk storage. We used Hadoop-1.2.1 and configured one

VM as the Name Node and the remaining 7 VMs as Data

Nodes. The Name Node was also used as a Data Node. The

data block size of the HDFS was set to 64MB and the

replication level of data block was set to 2. Two map slots and

two reduce slots were configured on each VM. We employed

two typical MapReduce applications, i.e. the WordCount

application and the Sort application which are CPU intensive

and IO intensive applications respectively. The teraGen

application was used to generate input datasets of different

sizes.

The second experimental Hadoop cluster was setup on

Amazon EC2 Cloud using 20 m1.large instances. The

specifications of the m1.large are shown in Table 3. In this

cluster, we used Hadoop-1.2.1 and configured one instance as

Name Node and other 19 instances as Data Nodes. The Name

Node was also used as a Data Node. The data block size of the

HDFS was set to 64MB and the replication level of data block

was set to 3. Each instance was configured with one map slot

and one reduce slot.

Table 3: Experimental Hadoop cluster.

 CPU 40 cores

 Processor 2.27GHz

Intel Xeon Server

1 Hard disk 2TB

 Connectivity

100Mbps Ethernet

LAN

 Memory 128GB

Amazon

vCPU 2

Hard disk 420GB

m1.large instance

Memory 7.5GB

 Operating System Ubuntu 12.04 TLS

 JDK 1.6

Software Hadoop 1.2.1

Oracle Virtual

Box 4.2.8

 Starfish 0.3.0

B. Job Profile Information

We run both the WordCount and the Sort applications on

the two Hadoop clusters respectively and employed Starfish

to collect the job profiles. For each application running on

each cluster, we conducted 10 tests. For each test, we run 5

times and took the average durations of the phases. Table 4

and Table 5 present the job profiles of the two applications

that run on the EC2 Cloud.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

21

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

C. Evaluating the Impact of the Number of Reduce

Tasks on Job Performance

In this section we evaluate the impact of the number of

reduce tasks on job performance. We run both the

WordCount and the Sort applications on the in-house

Hadoop cluster with a varied number of reduce tasks. The

experimental results are shown in Fig.5 and Fig.6

respectively. For both applications, it can be observed that

when the size of the input dataset is small (e.g. 10GB),

using a small number of reduce tasks (e.g. 16) generates

less execution time than the case of using a large number of

reduce tasks (e.g. 64). However, when the size of the input

dataset is large (e.g. 25GB), using a large number of reduce

tasks

Table 4: The job profile of the WordCount application in EC2 environment.

Data

 Map

task

Shuffle

duration(s)

Shuffle

duration(s) Red

uce

Map

 in the first

wave

in other

waves

size

duration

(s)

duration

(s)

task

s

(overlap

ping)

 (non-

overlapping

) (GB)

Avg

.

Ma

x Avg. Max Avg. Max

Av

g. Max

5 80 12 23 69 73 20 22 18 25

10 160 12 24 139 143 26 29 20 32

15 240 13 23 212 215 38 44 23 35

20 320 13 23 274 278 34 39 17 26

25 400 11 25 346 350 41 47 20 27

30 480 11 24 408 411 47 57 22 41

35 560 12 27 486 489 59 71 27 42

40 640 12 24 545 549 45 52 19 30

45 720 11 23 625 629 50 58 20 32

50 800 14 24 693 696 55 65 23 37

Table 5: The profile of the Sort application in EC2 environment.

 Map

task

Shuffle

duration(s)

Shuffle

duration(s) Red

uce

Data

 in the first

wave

in other

waves

Map

duration

(s)

duration

(s)

Size

(overlap

ping)

 (non-

overlapping) task

s

(GB

)

 Avg

.

 M

Avg.

 Ma

x Avg. Max

Av

g.

Max

ax

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

22

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

5 80 11 15 48 50 15 18 13 24

10 160 12 24 108 111 23 32 30 42

15 240 12 20 161 165 31 41 50 68

20 320 12 22 218 221 29 35 44 63

25 400 13 22 277 281 37 63 57 73

30 480 13 33 325 330 42 56 75 112

35 560 12 27 375 378 55 82 87 132

40 640 13 26 424 428 52 74 71 104

45 720 13 26 484 488 63 94 97 128

50 800 13 29 537 541 71 102 104 144

 (e.g. 64) generates less execution time than the case of using

a small number of reduce tasks (e.g. 16). It can also be

observed that when the size of the input dataset is small (e.g.

10GB or 15GB), using a single wave of reduce tasks (i.e. the

number of reduce tasks is equal to the number of reduce slots

which is 16) performs better than the case of using multiple

waves of reduce tasks (i.e. the number of reduce tasks is larger

than the number of reduce slots). However, when the size of

the input dataset is large (e.g. 25GB), both the WordCount and

the Sort applications perform better in the case of using

multiple waves of reduce tasks than the case of using a single

wave of reduce tasks. While a single wave reduces the task

setup overhead on a small dataset, multiple waves improve the

utilization of the disk I/O on a large dataset. As a result, the

number of reduce tasks affects the performance of a Hadoop

application.

D. Estimating the Execution Times of Shuffle Tasks and Reduce

Tasks

Both the WordCount and the Sort applications

processed a dataset on the in-house Hadoop cluster with a

varied number of reduce tasks from 32 to 64. The size of the

dataset was varied from 2GB to 20GB. Both applications also

processed another dataset from 5GB to 50GB on the EC2

Cloud with the number of reduce tasks varying from 40 to 80.

The LWLR regression model presented in Section III.C was

employed to estimate the execution times of both the shuffle

tasks and the reduce tasks of a new job. The estimated values

were used in Eq.(18) and Eq.(19) to estimate the overall job

execution time.

Fig.7 and Fig.8 show respectively the estimated

execution times of both the shuffle tasks and the reduce tasks

for both applications running on the Hadoop cluster in EC2.

Similar evaluation results were obtained from both applications

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

23

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

running on the in-house Hadoop cluster. We can observe that

the execution times of both the shuffle tasks (non-overlapping

stage) and reduce tasks are not linear to the size of an input

dataset. It should be noted that the execution times of the

shuffle tasks that run in an overlapping stage are linear to the

size of an input dataset because the durations of these tasks

depend on the number of map waves, as shown in Table 4 and

Table 5.

E. Job Execution Estimation

A number of experiments were carried out on both the

in-house Hadoop cluster and the EC2 Cloud to evaluate the

performance of the improved HP model. First, we evaluated the

performance of the improved HP model on the in-house cluster

and subsequently evaluated the performance of the model on

the EC2 Cloud. For the in-house cluster, the experimental

results obtained from both the WordCount and the Sort

applications are shown in Fig.9 and Fig.10 respectively. From

these two figures we can observe that the improved HP model

outperforms the HP model in both applications. The overall

accuracy of the improved HP model in job estimation is within

95% compared with the actual job execution times, whereas the

overall accuracy of the HP model is less than 89% which uses a

simple linear regression. It is worth noting that the HP model

does not generate a straight line in performance as shown in

[17]. This is because a varied number of reduce tasks was used

in the tests whereas the work presented in [17] used a constant

number of reduce tasks

The overall accuracy of the improved HP model in job

estimation is over 94% compared with the actual job execution

times, whereas the overall accuracy of the HP model is less

than 87%. The HP model performs better on small datasets but

its accuracy level is decreased to 77.15% when the dataset is

large (e.g. 40GB). The reason is that the HP model employs a

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

24

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

simple linear regression which cannot accurately estimate the

execution times of the shuffle tasks and the reduce tasks which

are not linear to the size of an input dataset.

Finally, we compared the performance of the improved HP

model in job estimation with that of both Starfish and the HP

model collectively.It can be observed that the improved HP

model produces the best results in job estimation for both

applications. Starfish performs better than the HP model on the

Sort application. This is mainly due to the high overhead of

Starfish in collecting a large set of profile information of a

running job. The Starfish profiler generates a high overhead for

CPU intensive applications like WordCount because the

Starfish uses Btrace to collect job profiles which requires

additional CPU cycles [16]. Starfish performs better on the Sort

application because Sort is less CPU-intensive than the

WordCount application.

We have validated the LWLR regression model in job

execution estimation using 10-fold cross validation technique.

We considered the execution of an entire job with three phases

(i.e. map phase, shuffle phase and reduce phase). The mean

absolute percentage errors of the WordCount application and

the Sort application are 2.27% and 1.79% respectively which

show high generalizability of the LWLR in job execution

estimation. Furthermore, the R-squared values of the two

applications are 0.9986 and 0.9979 respectively which reflects

the goodness of fit of LWLR.

F. Resource Provisioning

In this section, we present the evaluation results of the

improved HP model in resource provisioning using the in-

house Hadoop cluster. We considered 4 scenarios as shown in

Table 6. The intention of varying the number of both map slots

and reduce slots from 1 to 4 was twofold. One was to evaluate

the impact of the resources available on the performance of the

improved HP model in resource estimation. The other was to

evaluate the performance of the Hadoop cluster in resource

utilization with a varied number of map and reduce slots.

Table 6: Scenario configurations.

Scenarios Number of

map slots on

each VM

Number of reduce

slots on each VM

1 1 1
2 2 2
3 3 6
4 4 8

 To compare the performance of the improved HP model with

the HP model in resource estimation in the 4 scenarios, we

employed the WordCount application as a Hadoop job

processing 9.41GB input dataset. In each scenario, we set 7

completion deadlines for the job which are 920, 750, 590, 500,

450, 390 and 350 in seconds. We first built a job profile in each

scenario. We set a deadline for the job, and employed both

the HP model and the improved HP model to estimate the

amount

of resources (i.e. the number of map slots and the number of

reduce slots). We then assigned the estimated resources to the

job using the in-house Hadoop cluster and measured the actual

upper bound and the lower bound execution durations. We took

an average of an upper bound and a lower bound and compared

it with the given deadline. It should be noted that for resource

provisioning experiments we configured 16VMs to satisfy the

requirement of a job. Therefore, we employed another Xeon

server machine with the same specification of the first server as

shown in Table 3. We installed the Oracle Virtual Box and

configured 8 VMs on the second server.

VI. RELATED WORK

Hadoop performance modeling is an emerging topic that

deals with job optimization, scheduling, estimation and

resource provisioning. Recently this topic has received a great

attention from the research community and a number of models

have been proposed.

Kadirvel et al. [27] proposed Machine Learning (ML)

techniques to predict the performance of Hadoop jobs.

However, this work does not have a comprehensive

mathematical model for job estimation. Lin et al. [11] proposed

a cost vector which contains the cost of disk I/O, network

traffic, computational complexity, CPU and internal sort. The

later work [12] considers resource contention and tasks failure

situations. A simulator is employed to evaluate the

effectiveness of the model. However, simulator base

approaches are potentially error-prone because it is challenging

to design an accurate simulator that can comprehensively

simulate the internal dynamics of complex MapReduce

applications.

 The HP model [17] extends the ARIA mode by adding

scaling factors to estimate the job execution time on larger

datasets using a simple linear regression. The work presented in

[31] divides the map phase and reduce phase into six generic

sub-phases (i.e. read, collect, spill, merge, shuffle and write),

and uses a regression technique to estimate the durations of

these sub-phases. It should be pointed out that the

aforementioned models are limited to the case that they only

consider a constant number of the reduce tasks. As a result, the

impact of the number of reduce tasks on the performance of a

Hadoop job is ignored. The improved HP model considers a

varied number of reduce tasks and employs a sophisticated

LWLR technique to estimate the overall execution time of a

Hadoop job.

VII. CONCLUSION

Running a MapReduce Hadoop job on a public cloud such

as Amazon EC2 necessitates a performance model to estimate

the job execution time and further to provision a certain amount

of resources for the job to complete within a given deadline.

This paper has presented an improved HP model to achieve this

goal taking into account multiple waves of the shuffle phase of

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 10 12 – 25

25

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org

a Hadoop job. The improved HP model was initially evaluated

on an in-house Hadoop cluster and subsequently evaluated on

the EC2 Cloud. The experimental results showed that the

improved HP model outperforms both Starfish and the HP

model in job execution estimation. Similar to the HP model, the

improved HP model provisions resources for Hadoop jobs with

deadline requirements. However, the improved HP model is

more economical in resource provisioning than the HP model.

One future work would be to consider dynamic overhead of the

VMs involved in running the user jobs to minimize resource

over-provisioning. Interactions among HDD, CPU & Load

Generator further improved by using a better mathematical

model.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: simplified data

processing on large clusters,” Commun. ACM, vol. 51, no. 1, pp.

107–113, 2008.

[2] R. Lämmel, “Google’s MapReduce programming model

Revisited,” Sci. Comput. Program. vol. 70, no. 1, pp. 1–30, 2008.

[3] K. Taura, T. Endo, K. Kaneda, and A. Yonezawa, “Phoenix: a

parallel programming model for accommodating dynamically

joining/leaving resources,” in SIGPLAN Not., 2003, vol. 38, no.

10, pp. 216–229.

[4] S. M. Metev and V. P. Veiko, Laser Assisted Microtechnology,

2nd ed., R. M. Osgood, Jr., Ed. Berlin, Germany: Springer-

Verlag, 1998.

[5] “Apache Hadoop.” [Online]. Available:

http://hadoop.apache.org/. [Accessed: 21-Oct-2016].

[6] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The Performance of

MapReduce: An In-depth Study,” Proc. VLDB Endow., vol. 3,

no. 1–2, pp. 472–483, Sep. 2010.

[7] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS:

Mining Peta-scale Graphs,” Knowl. Inf. Syst., vol. 27, no. 2, pp.

303–325, May 2011.

[8] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo, “PLANET:

Massively Parallel Learning of Tree Ensembles with

MapReduce,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1426–1437,

Aug. 2009.

[9] A. Pavlo, E. Paulson, and A. Rasin, “A comparison of

approaches to large-scale data analysis,” in SIGMOD ’09

Proceedings of the 2009 ACM SIGMOD International

Conference on Management of data, 2009, pp. 165–178.

[10] Z. Meng, C. Xu, and M. Wang, “A Practical Performance

Model for Hadoop MapReduce,” in Cluster Computing

Workshops (CLUSTER WORKSHOPS), 2012 IEEE

International Conference on, 2012, pp. 231–239.

[11] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin,

and S. Babu, “Starfish: A Self-tuning System for Big Data

Analytics,” in In CIDR, 2011, pp. 261–272.

[12] H. Herodotou, F. Dong, and S. Babu, “No One (Cluster) Size

Fits All: Automatic Cluster Sizing for Data-intensive Analytics,”

in Proceedings of the 2nd ACM Symposium on Cloud

Computing (SOCC ’11), 2011, pp. 1–14.

[13] A. Verma, L. Cherkasova, and R. H. Campbell, “Resource

provisioning framework for mapreduce jobs with performance

goals,” in Proceedings of the 12th ACM/IFIP/USENIX

international conference on Middleware, 2011, pp. 165–186.

[14] H. Herodotou, “Hadoop Performance Models,” 2011. [Online].

Available: http://www.cs.duke.edu/starfish/files/hadoop-

models.pdf. [Accessed: 22-Oct-2016].

[15] A. George, W. Hans, and H. Frank, Mathematical Methods for

Physicists, 6th ed. Orlando, FL: A Press, 2005, p. 1060.

[16] K. Morton, A. Friesen, M. Balazinska, and D. Grossman,

“Estimating the progress of MapReduce pipelines,” in Data

Engineering (ICDE), 2016 IEEE 26th International Conference

on, 2016, pp. 681–684.

[17] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson,

“Statistics-driven workload modeling for the Cloud,” in Data

Engineering Workshops (ICDEW), 2010 IEEE 26th

International Conference on, 2016, pp. 87–92.

[18] S. Kadirvel and J. A. B. Fortes, “Grey-Box Approach for

Performance Prediction in Map-Reduce Based Platforms,” in

Computer Communications and Networks (ICCCN), 2015 24st

International Conference on, 2015, pp. 11–19.

[19] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA:

automatic resource inference and allocation for MapReduce

environments.,” in 8th ACM International conference on

autonomic computing, 2015, pp. 235–244.

[20] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance

Modeling of MapReduce Jobs in Heterogeneous Cloud

Environments,” in Proceedings of the 2013 IEEE Sixth

Palson Kennedy R is currently a Professor in the Department

of Computer Science & Engineering at PERI Institute of

Technology affiliated to Anna University Chennai, TN, India..

He received the PhD from Anna University from Information

&Communication Engineering in 2015. He is a Post-Doctoral

Research Fellow in the School of Computer Science and

Informatics. His research interests are in the areas of high

presentation computing (grid and cloud computing), big data

analytics and intelligent systems. He is on the Review Boards

of Computing and Informatics journal and journal of Cloud

Computing: Advances, Systems and Applications. He has over

16 research publications in these areas. He is a Fellow of

Institution of Engineers.

