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Abstract – The objective of this paper is to study the radiation effects on magnetohydrodynamic natural convection heat transfer flow from 

spirally enhanced wavy channel through a porous medium and a smooth flat wall. A uniform magnetic field is assumed to be applied normal to 

the insulating walls of the channel. The governing equations of the flow field are solved nu using regular perturbation technique subject to the 

appropriate boundary conditions. The solution of the mean part and total solution of the problem have been evaluated analytically for various 

parameters pertaining to the problem and are presented graphically. 
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I. INTRODUCTION 

The problem of natural convection flows over and 

through wavy walls has been studies because of its several 

application to physical problems. Such physical problems 

are transpiration cooling of re-entry vehicles and rocket 

boosters, cross – hatching on ablative surfaces and film 

vaporization in combustion chambers, geophysics, 

astrophysics, meteorology, aerodynamics, boundary layer 

control, as heat exchangers and nuclear reactors. 

 

Radiation effects on the free convection flow are 

important in the context of space technology and processes 

involving high temperatures and very little is known about 

the effects of radiation on free convection flow of radiating 

fluid confined between two finitely long (compared to the 

width of the channel) vertical walls, one of which is spirally 

enhanced (roughed) or wavy. The inclusion of radiation 

effects in the energy equation however lead to highly 

nonlinear partial differential equations. Since radiation is 

quite complicated, its effect on the flow and heat transfer 

characteristics in the problem described in the little has not 

been studies. Umavathi [13] Mixed convective flow of 

immiscible viscous fluids confined between a long vertical 

wavy wall and a parallel flat wall. However, Grief et al. [9] 

have shown that in the optically thin limit, the physical 

situation can be simplified and, thereby they solved the 

problem of fully developed radiating laminar convective 

flow in an infinite vertical heated channel closely followed 

the analysis of Cogley et al. [8] who showed that, for an 

optically thin limit, the fluid does not absorb its own emitted 

radiation but the fluid does absorb radiation emitted by the 

boundaries, showed that, for an optically thin nongray gas 

near equilibrium, the following relation holds: 
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T is the temperature, rq
 
is the radiative heat flux   is the 

absorption coefficient, B is Planck’s function, and subscript 

w refers to condition at a wall. Fasogbon [7] studied the 

effect of radiation when the integrand is evaluated in the 

static fluid condition.  

.Convective flow through a porous medium has 

application in the field of chemical engineering for filtration 

and purification processes. In petroleum technology, to 

study the movement of natural gas oil and water through oil 

channels/reservoirs and in the field of agriculture 

engineering to study the underground resources, the channel 

flows through porous medium have numerous engineering 

and geophysical applications. Effects of free convection 

currents on the flow were studied.  Ching - Yang Cheng [3] 

Combined heat and mass transfer in natural convection flow 

from a vertical wavy surface in a power-law fluid saturated 

porous medium with thermal and mass stratification. Rehena 

Nasrin [15] Mixed magneto convection in a lid-driven 

cavity with a sinusoidal wavy wall and a central heat 

conducting body. Chaudhary and Tara Chand [2] 

investigated the effect of injection on the three dimensional 

flow and heat transfer through a vertical parallel plate 

channel, which is embedded in a porous medium. Takhar 

and Kumar [12] studied the combined free and forced 

convection of an incompressible viscous fluid in a porous 

medium past a hot vertical plate. But they have not studied 

the flows through wavy channel in a porous medium. Ch 

Kesavaiah and Venkataramana studies [1] A study of some 

convective flows with heat transfer effects. Devika et.al [5] 

Chemical reaction effects on MHD free convection flow in 

an irregular channel with porous medium. Muthuraj et.al [9] 

studied MHD flow of a couple-stress fluid and a viscous 

fluid in a vertical wavy porous space with travelling thermal 

waves and temperature-dependent heat source. Satya 

Narayana [11] studies Effect of variable permeability and 

radiation absorption on magnetohydrodynamic (MHD) 

mixed convective flow in a vertical wavy channel with 

travelling thermal waves. Ebaid [6] studied the effects of 

magnetic field and wall slip conditions on the peristaltic 

transport of a Newtonian fluid in an asymmetric channel.  
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Previous studies of the flow of heat and mass transfer 

have focused mainly on a flat wall or a regular channel. It is 

necessary to study the heat and mass transfer in irregular 

channels because irregular channels are present in many 

applications. Fluid flow over way boundaries may be 

observed in several natural phenomena, viz, the generation 

of wind waves on water, the formation of sedimentary 

ripples in river channels and dunes in the desert. The 

analysis of such flows finds application in different areas 

such as transpiration cooling of re-entry vehicles and rocket 

booster, cross hatching on ablative surfaces and film 

vaporization in combustion chambers. In view of these 

applications Das [15] discussed free convective MHD flow 

and heat transfer in a viscous incompressible fluid confined 

between a long vertical wavy wall and a parallel flat wall, 

Taneja and Jain [16] studied MHD flow with slip effects and 

temperature dependent heat source in a viscous 

incompressible fluid confined between a long vertical wavy 

wall and a parallel flat wall. 

 

In view of the above mention investigation and 

applications, in this paper we investigate the MHD flow of a 

viscous fluid between a parallel flat wall and a long wavy 

wall in the presence of a slip condition taking into account 

the thermal radiation effects through porous medium. The 

fluid is sucked through the wall 0y   with the constant 

suction velocity 0V . The effects of pertinent parameters 

entering into the problem have been discussed in detail.   

 

II.FORMULATION OF THE PROBLEM 

We consider a steady two  - dimensional flow of nongray 

gas near equilibrium in the optically thin limit, between 

finitely long vertical roughed wall 

  cos , 1,y Kx      K, the wave number) and a 

parallel flat wall  y d  . The wavy and flat walls are 

maintained at constant temperatures of wT
 

and 1T
 

respectively. The x -axis is along the wall in the upward 

direction and the y -axis is normal to it (Figure 1). The 

fluid properties are assumed to be constant and the 

Boussinesq approximation will be used so that the density 

variation is retained only in the buoyancy term. The viscous 

dissipative heat is also assumed to be negligible. In the 

present analysis we shall consider small amplitude wall 

roughness that is characterized by a certain wavelength 

2

K


  . The volumetric heat generation/absorption term 

in the energy equation is assumed constant.  

Assuming that the flow takes place at low concentration we 

neglect Soret and Doufer effects, the following assumptions 

are made.  

 All the fluid properties except density in the 

buoyancy force are constant.  

 The viscous and magnetic dissipative effects are 

neglected in the energy equation.  

 The volumetric heat source/sink term in the energy 

equation is constant.  

 The magnetic Reynolds number is small so that the 

induced magnetic field can be neglected.  

 The wave length of the wavy wall is large such that 

wK  is small.  

 The viscous dissipation and work done by pressure 

are sufficiently small in comparison with both heat 

flow by conduction and the wall temperatures.  

 The electric field is assumed to be zero.  

 

 
Under these assumptions the appropriate governing 

equations of continuity momentum and energy and 

concentration equations are given by 

  0
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The boundary conditions for velocity, temperature and 

concentration fields are defined as  
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 where ,u v  are velocity components in ,x y  -axis 

respectively,
0B - transverse magnetic field, p - pressure, T- 

temperature, K  - permeability of the medium, k  is the 

thermal conductivity,  - density,   - volumetric 

coefficient of thermal expansion, pC specific heat at 

constant pressure,   -kinematic viscosity, and   - 

coefficient of electric conductivity. 

Introducing the following non dimensional quantities  
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In view of the above non-dimensional variables, the basic 

field equations (1) - (5) can be expressed in the non-

dimensional form as 
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The corresponding boundary conditions are 

0, 0, 1, 1 cos

0, 0, , 1T C

u v C on y x

u v m C m on y

  



    

      (12)
       

In the static fluid we have    

3

2

s sP gxd

x









      (13) 

Where 
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known Boussinesq approximation, where subscript s refers 

to static conditions, 

In view of equation (13), equation (8) becomes 

where Gr  is the Grashof number, M  is the Hartmann 

number, Pr  is the Prandtl number,   is the kinematic 

viscosity,   is the non-dimensional amplitude parameter, 

R is the radiation parameter,   is the heat source/sink 

parameter,   is the dimensionless concentration, Kr is the 

chemical reaction parameter,   is the non-dimensional 

amplitude parameter.  
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III. SOLUTION OF THE PROBLEM 

We assume that the solution consists of a mean part and 

perturbed part so that the velocity, temperature and 

concentration distributions are  
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where the perturbed quantities 1 1 1 1, , ,u v P  are small 

compared with the mean or the zeroth order quantities. 

Substituting the above Equation (15) into the Equations (7) - 

(11) and equating the harmonic and non-harmonic terms and 

neglecting the higher order terms of, we obtain the 

following set of equations:  

 

The zeroth-order equations 
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The first-order equations, 
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In deriving the first equation in (19) the constant pressure 

gradient term 

Where  0p sK P P
x
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

 is taken to be zero Vajravelu 

and Sasatri [19], and a prime denotes differentiation with 

respect to y . 

To solve the equations (21) - (24) we introduce the 

following similarity transformations 
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Eliminating the pressure from (22) and (23) we can express 

equations (22) - (24) in terms of the stream function 1 in 

the form  
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We assume 1 1 1, ,C  , and in the form  
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(Perturbation series expansion for small wave length λ in 

which terms of exponential order arise) from which we infer 

that 
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In view of the above 
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where the primes denote differentiation with respect to y 

The boundary condition (26) can now be written in terms 
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For small values of    wor K , we can 
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and i  is the complex unit.            

Substituting these results into (31) - (33), we obtain the 

following sets of ordinary differential equations 
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International Journal on Future Revolution in Computer Science & Communication Engineering                                       ISSN: 2454-4248 
Volume: 3 Issue: 10                                                                                                                                                         130 – 140 

_______________________________________________________________________________________________ 

134 

IJFRCSCE | October 2017, Available @ http://www.ijfrcsce.org                                                                 

_______________________________________________________________________________________ 

   2 2

1 1 0 0 0 0

1 1

iv M a i u u

Grt Gm

   



     

  

  (39) 

 1 1 0 0 0 0Prt Rt i u t         (40) 

 1 1 0 0 0 0KrSc iSc u C         (41) 

   2 2

2 2 0 0 0 1

2 2

iv M a i u u

Grt Gm

   



     

  

 (42) 

 2 2 0 1 0 1 0Prt Rt i u t t        (43) 

 2 2 0 1 1 0 0KrSc iSc u C           (44) 

The corresponding boundary conditions are 

0 0 0 0 0 0 0

0 0 0 0

, 0, , 0

0, 0, 0, 0 1

u t C on y

t on y

   

  

         

     
  (45)

    

0, 0, 0, 0 0 0

0, 0, 0, 0 1

j j j j

j j j j

t on y for j

t on y

  

  

      

     
(46)

    

The solutions of above ordinary differential equations with 

respect to the boundary conditions (45) and (46) are 

 



5 61 2

10 9 9 10

3 7 84

1 2 3 4 5 6

7 8 19 18 15

9 10 11 12

m y m ym y m y

m y m y m y m y

m y m y m ym y

u y A e A e A A e A e A

A e A e A y A e A e

A e A e A e A e



      

    

    

 

  9 10 3

7 84

2

21 22 23 24

25 26 27

m y m y m y

m y m ym y

v y A y A e A e A e

A e A e A e

     

   

 

  32 1 4

1 2 3 5 6

m ym y m y m yy L L e L e L e L e          

  6 5 8 7

1 2 4 5

m y m y m y m y
C y B e B e B e B e        

Skin friction 

   





0 1

0 1 1 2 2 5 4 6 5

10 7 9 8 9 18 10 15 9 9

4 10 7 11 8 12

i x

y

u
u y e u y

y

m A m A m A m A

m A m A m A m A m A

m A m A m A

 








   



   

    

  

 



5 61 2

10 9 9
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7 8

1 1 1 2 2 5 4 6 5

10 7 9 8 19 9 18

10 15 3 9 4 10

7 11 8 12

m mm m

y
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m A e m A e





    

   

  

  

 

The dimensional Nusselt number Nu  is given by 

   0 1

i xNu y e y
y


  


   


 

 0 2 2 3 1 4 5 3 6yNu m L L m m L m L      

32 1 4

1 2 2 3 1 4 5 3 6

mm m m

yNu m L e L m e m L e m L e
       

The dimensional Sherwood number Sh  is given by 

   0 1

i xC
Sh C y e C y

y


    


 

 0 6 1 5 2 8 4 7 5ySh m B m B m B m B      

6 5 8 7

1 6 1 5 2 8 4 7 5

m m m m

ySh m B e m B e m B e m B e
       

 

Appendix 

1 3 2 4

5 7 6 8

2 2 2 2

9 10

,

,

,

m m R m m R

m m KrSc m m KrSc

m M a m M a

    

    

    

 

 

The other constants not shown to brave the space 

 

IV. RESULTS AND DISCUSSIONS 

The results of the numerical evaluations at various values of 

y are displayed in figures (2) – (8) for some dimensionless 

mean solution (zeroth-order 0 0,u  correspond to fully 

developed mean flow; applicable to the case of a channel 

whose walls are both flat), first-order ( 1 1,v   arising out of 

small roughness of a wall of the channel) and the total 

dimensionless  0 1u u u   velocity profiles. We have 

computed the numerical values of velocity, temperature, 

skin friction and Nusselt number for cooling of the wall 

 0Gr  , 0.002    0   case of dilated channel), 

0.01,0.02  . For physical reality, we took wall 

temperature ratio parameter 1.0m    when it is 

postulated that the average of the temperatures of the two 

walls is equal to that of the static fluid. 0m   Implies that 

the temperature of the static fluid is equal to that of the flat 

wall, 1.0m   means equal wall temperatures while 

2.0m   indicates that wall temperatures are unequal. In 

the absence of heat generation we have 0  , while 

5.0   corresponds to heat generation and 5.0    

gives absorption.  

 

Figures (2) – (8) depict the zeroth-order velocity 0u  of the 

fluid when 1.0Cm   and 2.0Tm   with changes in the 

heat generation parameter (α), thermal Grashof 

number  Gm ,Grashof number  Gr , Chemical reaction 

parameter  Kr , Magnetic parameter  M , Schmidt 

number  Sc , and Radiation parameter  R .  
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Qualitatively similar behaviour of the fluid velocity 
0u  

occurs with an increase in heat generation parameter form 

figure (2). The aforesaid conclusions hold good in the case 

of thermal radiation  0R  . However, the only exception 

is that the velocity in the absence of thermal radiation 

 0R   increases across the channel width with in the 

presence of heat generation. It is clear from figure (3) and 

(4) that with an increase in the thermal Grashof number 

 Gm  and Grashof number  Gr    the magnitude of the 

zeroth order fluid velocity 
0u  increases across the entire 

channel width. Figure (5) depict the variation of zeroth order 

velocity profiles 0u  against for different values of chemical 

reaction parameter for fixed values of other parameters. It is 

observed that, increasing the value of chemical reaction 

results decreases the velocity and concentration in the 

boundary layer. This is due to fact that destructive chemical 

reaction reduces the solutal boundary layer thickness and 

increase the mass transfer. Figure (6) depicts the zeroth 

order velocity distribution 0u  for different values of 

magnetic parameter. It observed that the zeroth order 

velocity decreases with increasing in magnetic parameter. 

The influence of Schmidt number on the zeroth order 

velocity profiles are plotted in figure (7). The Schmidt 

number embodies the ratio of momentum to the mass 

diffusitivity. The Schmidt number therefore quantities the 

relative effectiveness of momentum and mass transport by 

diffusion in the hydrodynamic (velocity) boundary layers. 

As the Schmidt number increases the velocity increases. 

Figure (8) shows the zeroth order velocity distribution for 

different values of radiation parameter. It is observed that 

the zeroth order velocity distribution increases when the 

radiation parameter increases. 

 

Figures (9) illustrate the behaviour of the fluid mean 

temperature 0  with changes in heat absorption 

when 1.0Tm   , curves and 2.0Tm  , curves for non-

radiating and radiating respectively. From figure (9) it is 

evident that for all values of heat absorption, the fluid 

temperature 0  in the in absence of thermal radiation 

 1.0R   while it is parabolic in nature curves increases 

for its radiating counterpart with 1.0, 2.0Tm   .  Also 

superimposed on it there are parabolic distributions that are 

due to the presence of heat generation/absorption for the two 

cases under consideration. Form figure (10) shows the mean 

temperature distribution 0  against y for different values of 

radiation parameter, it is evident that for all values of, the 

fluid temperature decreases at 5.0    but the 

temperature is the exact opposite of that observed in the case 

of 5.0  . The effect of radiation is to increase the rate of 

energy transport to the gas, thereby increasing the 

temperature of the gas.  

 

Form figures (11) and (12) radically for different values of 

Chemical reaction parameter and Schmidt number of the 

concentration profiles are plotted.  It is obvious that the 

effect of increasing values of Chemical reaction parameter 

and Schmidt number results in a decreasing concentration 

distribution across the boundary layer. 

 

Figures (13) to (14) show the behaviour of the fluid cross  

velocity v  perpendicular to the channel length for the effect 

of buoyancy  0R   and combined effect of buoyancy 

and radiation respectively when 1.0Cm   and 2.0Tm   

each for different values of heat absorption and chemical 

reaction parameter. It is evident that the v  is affected 

(enhanced) significantly by the changes in heat absorption 

and chemical reaction parameter we noticed that as the heat 

generation parameter is increased v  diminishes sharply and 

remains negative throughout the channel width. the reverse 

effect observed in chemical reaction parameter. 

 

Figures (15) and (16) illustrate the behaviour of the total 

fluid temperature  0 1    when the wall temperature 

ratio 1.0Tm   in case under study for different values of 

heat absorption and radiation parameter.  It is obvious that 

from as the heat absorption is increased the temperature   

diminished sharply and positive throughout the width of the 

channel and the reverse effect observed in radiation 

parameter. 

 

The variations in the total concentration profiles 

 0 1C C C   when the wall temperature ratio 

1.0Cm    for different values of Schmidt number and 

chemical reaction parameter are clearly observed in figures 

(17) and (18). It is obvious that the concentration decrease 

with increase in Schmidt number and chemical reaction.   

 

Figures (19) to (23) describe the behaviour of the total fluid 

velocity  0 1u u u   when the wall temperature ratio 

1.0Cm   and 2.0Tm   respectively under the effect of 

buoyancy effect  0R  . Increasing values of the radiation 

parameter, heat absorption parameter, Grashof number, 

chemical reaction parameter and Magnetic parameter 

enhance the total velocity considerably. In figures (19) to 

(22), it is evident that the total velocity is increasing 

function of increasing , , ,R Gm Kr .  But in the figure 

(23) the reverse effect observed in magnetic parameter. 

Figures (24) and (25) show the local skin friction coefficient 

for different values of  and at 0y   and 1y   keeping 

all the parameters fixed. From the figure (24) we see that for 

fixed Gr  at 0y  ,  increase as   increases. On the 

other hand as Gr increases skin friction coefficient has no 

effect at 1y   , against   in figure (25). Figure (26) and 

(27) describe the behaviour of rate of heat transfer 
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 Nu with changes in the values of  and 
Cm at 0y   

and 1y  . It is observed from these figures that the Nusselt 

number increases due to increases in the heat source 

parameter  at 0y   and decreases the heat source 

parameter  at 1y   of the walls. Figure (28) and (29) 

describe the behaviour of Sherwood number  Sh with 

changes in the values of Kr and 
Cm at 0y   and 1y  . It 

is observed from these figures that the Sherwood number 

decreases due to increases in the chemical reaction 

parameter of the both walls.  

 

Conclusions   
In the present paper, we observed the followings: 

 

 When the Grashof number 0Gr  , the nature of 

radiation is to increase the mean velocity and when 

0Gr   then the nature of radiation is to decrease 

the mean velocity.  

 When the Grashof number 0Gr  , the inclusion 

of heat source reduces the mean velocity and when 

0Gr   then the inclusion of heat source increases 

the mean velocity.  

 Inclusion of radiation increases and inclusion of 

heat source reduces the zeroth order temperature.  

 The nature of radiation is to decrease the perturbed 

velocity and secondary velocity for 0Gr   and to 

increase these velocities when 0Gr  .  

 The nature of heat source is to increase the 

perturbed velocity and secondary velocity for 

0Gr   and to decrease these velocities 

when 0Gr  .  

 Presence of heat source increases the first order 

temperature near the wall 1.0y    and after a 

point where 0.4y    this temperature decreases 

with the increase of heat source.  

 Existence of radiation reduces the first order 

temperature near the wall 1.0y    and after a 

point where 0.4y    this temperature increases 

the increase of radiation.  

 When 0Gr  , the nature of radiation is to reduce 

the skin friction at the wall 1y   , 1y    and to 

increase the skin friction at wall 1y   , but when 

0Gr   the results are opposite to previous 

statement.  

 When 0Gr  , the inclusion of heat source 

increases the skin friction at the wall 1y    and 

it is decreased at the wall 1y   , but when 

0Gr   the results are opposite to previous 

statement.  

 Presence of radiation gives a decrement to Nusselt 

number and increment to recovery factor.  

 The Nusselt number changes in the same direction 

as heat source, but presence of heat source is 

responsible to reduce the recovery factor. 
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Figure (2): Zeroth-order velocity distribution for different values of 
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Figure (3): Zeroth-order velocity distribution for different values of Gm
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Figure (4): Zeroth-order velocity distribution for different values of Gr
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Figure (5): Zeroth-order velocity distribution for different values of Kr
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Figure (6): Zeroth-order velocity distribution for different values of M
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Figure (7): Zeroth-order velocity distribution for different values of Sc
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Figure (8): Zeroth-order velocity distribution for different values of R
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Figure (9): Zeroth-order Temperature profiles for different values of  
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Figure (10): Zeroth-order temparature profiles for different values of R
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Figure (11): Concentration profiles for different values of Kr
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Figure (12): Concentration profiles for different values of Sc
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Figure(13): Cross velocity profiles for different values of 
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Figure(14): Cross velocity profiles for different values of Kr
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Figure (15): Temperature profiles for different values of R
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Figure (16): Temperature profiles for different values of 
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Figure (17): Concentration profiles for different values of Sc
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Figure (18): Concentration profiles for different values of Kr
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Figure (19): Velocity profiles for different values of R
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Figure (20): Velocity profiles for different values of 
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Figure (21): Velocity profiels for different values of Gm
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Figure (22): Velocity profiles for different values of Kr
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Figure (23): Velocity profiles for different values of M
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Figure (24): Skin friction for   versus Gr at y=0
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Figure (25): Skin friction for   versus Gr at y=1
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Figure (26) : Nusselt number for   versus m
T
 at y=0
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Figure (27): Nusselt number   versus m
T
 at y=1
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