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Abstract— In this paper we investigate some important properties of prime Γ- radical of aTΓ-ideal in a ternary Γ– semiring.  On some special 

properties of prime Γ–radical, radical TΓ-ideal are also obtain in the case when the ideals are k-TΓ-ideals and h-TΓ-ideals. 

 

Keywords- Ternary Γ–semiring, radicalTΓ-ideal, radical k-TΓ-ideal, radical h-TΓ– ideal 

__________________________________________________*****_________________________________________________  

I. Introduction: 

The notion of ternary Γ– semiring was introduced by M. 

SajaniLavanyaand D. MadhusudhanaRao in [5, 6] in the year 

2015, as a natural generalization of ternary Γ– ring and Γ- 

semiring.  The notion of prime radical of an ideal is important 

to the theory of semigroups, semirings as well as Γ- 

semigroups etc.  In this paper we study prime Γ- radicals in 

ternary Γ- semiring as mentioned in the abstract. 

 

II. Preliminaries: 

Definition 2.1[5]:  The non empty sets T and Γ together with a 

binary operation called addition and ternary multiplication 

denoted by juxtaposition is said to be a ternary Γ– semiringif 

T and Γ be two additive commutative semigroups satisfying 

the following conditions. 

( i)  [[x1αx2βx3]γx4δx5] = [x1α [x2βx3 γx4]δx5] = [x1αx2β [x3 

γx4δx5]] 

(ii)  [(x1+x2)αx3 βx4] = [x1αx3 βx4] + [x2αx3 βx4] 

(iii)  [x1α(x2+x3)βx4] = [x1αx2βx4] + [x1αx3 βx4] 

(iv)  [x1αx2β(x3+ x4)] =[x1αx2 βx3] + [x1αx2 βx4] 

for all x1,x2,x3 ,x4,x5∈ Tand α,β,γ,δ ∈Γ 

Definition 2.2[5]:  An element 0 in ternary Γ– semiring T 

such that 0 + a = a and 0αaβb = aα0βb = aαbβ0 = 0 for all a, 

b∈T ,α, β∈Γ.  Then 0 is called the 0 – element or simply zero 

of the ternary Γ– semiring T.  

Definition 2.3[5]:An element a of a ternary Γ– semiring T is 

said to be an identity provided aαaβt = tαaβa = aαtβa = t for 

all t ∈ T, α, β∈Γ. 

Definition 2.4[5]:  A ternary Γ– semiring T is said to be 

commutative provided aαbβc = bβcαa =cαaβb = bαaβc 

=cαbβa = aαcβb for all a, b, c∈ T, α,β∈Γ. 

Definition 2.5[5]:  An additive subsemigroup S of T is said to 

be a ternary Γ– sub semiring provided aαbβc∈ S for all a, b, 

c∈ S. 

Definition 2.6[5]:An additive subsemigroup A of T is said to 

be a leftTΓ– ideal of T  ifxαyβa ∈ A for all a∈ A, x,y∈ T, α, 

β∈Γ. 

Definition 2.7[5]:An additive subsemigroup A of T is said to 

be a lateralTΓ– ideal of T  ifxαaβy ∈ A for all a∈ A, x,y∈ T, α, 

β∈Γ. 

Definition 2.8[5]:An additive subsemigroup A of T is said to 

be a rightTΓ– ideal of T  ifaαxβy ∈ A for all a∈ A, x,y∈ T, α, 

β∈Γ. 

Definition 2.9]5]:  An additive subsemigroup A of T is said to 

be a TΓ– ideal of T  ifxαyβa ∈ A, xαaβy ∈ A  and aαxβy ∈ A. 

Definition 2.10:  A TΓ- ideal A of a ternary Γ- semiring T is 

said to be a k-TΓ-ideal if for x,y∈ T, x+y∈ A and x∈ A then y∈ 

A. 

Definition 2.11:  A TΓ- ideal A of a ternary Γ- semiring T is 

said to be a h-TΓ-ideal if for x∈ T,  and for a1, a2∈ A,  x+ a1 +t 

= a2+t , t ∈ T implies x∈ A. 

Definition 2.12[5]:Aproper TΓ- ideal P of a ternary Γ- 

semiring T is said to be a prime TΓ-ideal of T if for any three 

TΓ- ideals A, B, C of T, AΓBΓC ⊆ P implies A⊆P or B⊆P or 

C⊆P. 
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Definition 2.13 [6]:  Aproper TΓ- ideal Q of  T is said to be a 

semiprimeTΓ-ideal of T if  AΓAΓA ⊆ Q implies A⊆Q for any 

TΓ- ideal A of T. 

Definition 2.14:  Anonempty subset M of a ternary Γ- 

semiring T is said to be an m– system if for each a, b, c∈ M, 

there exists elements x1,x2,x3 ,x4of T such that aΓx1ΓbΓx2Γc 

⊆ M or aΓx1Γx2ΓbΓx3Γx4⊆ M  or  aΓx1Γx2ΓbΓx3ΓcΓx4⊆ M or 

 x1ΓaΓx2ΓbΓx3Γx4Γc⊆ M. 

 

III. Prime Γ – Radical of a TΓ- ideal: 

Definition 3.1:  Let T be a ternary Γ- semiring and A be a TΓ- 

ideal of T.  Then prime Γ –Radical of A is denoted by rad(A) 

is defined to be the intersection of all prime TΓ- ideals of T 

each of which contains A.  

Definition 3.2:  A TΓ- ideal N in a ternary Γ- semiring T is 

said to be a nilpotent TΓ- idealif (NΓ)
2n

N = 0 for some natural 

number n. 

Theorem 3.3:  In a ternary Γ– semiringTthe following 

conditions are equivalent. 

(1) P is a prime TΓ- ideal of T. 

(2) aΓTΓbΓTΓc ⊆ P , aΓTΓTΓbΓTΓTΓc ⊆ P , 

aΓTΓTΓbΓTΓcΓT ⊆ P ,TΓaΓTΓbΓTΓTΓc ⊆ P 

implies a ∈ P or b ∈ P or c∈ P. 

(3) <a>Γ<b>Γ<c>⊆ P implies a ∈ P or b ∈ P or c∈ P. 

Corollary 3.4:  A TΓ- ideal of A of a commutative ternary 

Γ– semiringT is prime if and only if aαbβc ∈ P implies a ∈ P 

or b ∈ P or c∈ P for all a, b, c∈ T, α, β ∈ Γ. 

Theorem 3.5:  For a TΓ- ideal A of a ternary Γ– semiringT 

we have the following. 

(1)  A ⊆ rad(A) 

(2)  If P is a prime TΓ- ideal of T then A ⊆ Piff 

rad(A)⊆ P 

(3)  If B is a TΓ- ideal of T satisfying A ⊆ B then 

rad(A) ⊆ rad(B) 

(4) rad(A) is semiprimeTΓ- ideal of T. 

(5) rad(A) = rad [(AΓ)
2n 

A], n being an integer and 

n≥0. 

(6) rad(A) contains every nilpotent TΓ- ideal of T. 

(7)  rad[rad(A)] = rad(A) 

Proof:  (1), (2), (3) follow immediately from the definition of 

prime Γ – radical. 

4)  Obviously rad(A) is a TΓ- ideal of T.  Let CΓCΓC 

⊆rad(A) where C is a TΓ- ideal of T.  Now rad(A) = ⋂{Pi / A 

⊆Pi , Pi is a prime TΓ- ideal in T}.  So CΓCΓC ⊆Pi, for all Pi .  

Then Pi being prime, C ⊆Pifor allPi. Therefore C ⊆rad(A), 

proving raad(A) is a semiprimeTΓ- ideal of T.   

5)  Let A is a TΓ- ideal of T, (AΓ)
2n

A⊆ A, where n is an 

integer and n≥0.  Hence by condition (3) rad [(AΓ)
2n

A]⊆ 

rad(A).  Let a ∈rad(A).  Now rad(A) = ⋂{Pi / A ⊆Pi , Pi is a 

prime TΓ- ideal in T}.  Then a∈Pi for all Pi .  If possible let a 

∉rad [(AΓ)
2n

A].  Then there exist a prime TΓ- ideal Q in T 

such that (AΓ)
2n

A⊆ Q and a ∉ Q.  Now Q being prime, 

(AΓ)
2n

A⊆ Q implies that A⊆ Q.  Hence Q is some Pi .  This 

gives a contradiction.  Therefore a ∈rad [(AΓ)
2n

A].  

Consequently rad(A) = rad [(AΓ)
2n 

A]. 

6)  Let N be a nilpotent TΓ- ideal of T.  Then (NΓ)
2n

N = {0}, 

for some integer n≥0.  Hence (NΓ)
2n

N ⊆ rad(A).  So (NΓ)
2n

N 

⊆Pifor allPi containing A and Pi is a prime TΓ- ideal.  Then N 

⊆Pifor allPi.  Therefore N⊆rad(A). 

Theorem 3.6:  Let A be a TΓ- ideal in a ternary Γ– 

semiringT then rad(A) = {t∈T/every m-system in T which 

contains t has a non empty intersection with A} 

Theorem 3.7:  Let A be a TΓ- ideal in a ternary Γ– 

semiringT.  If a∈rad(A) then there exist an integer n≥0 

such that (aα)
2na∈ A for α ∈ Γ. 

Theorem 3.8:  Suppose T is a commutative ternary Γ– 

semiring and M is an m – system in T containing a.  Then 

there exist an integer n≥0 such that (aΓ)
2naΓxΓy ⊆ M 

where  x, y ∈ T. 

Proof:  Since a ∈ M, there existx1,x2,x3 ,x4∈ T such that 

aΓx1ΓaΓx2Γa⊆ M or aΓx1Γx2ΓaΓx3Γx4Γa ⊆ M or 

aΓx1Γx2ΓaΓx3ΓaΓx4⊆ M or x1ΓaΓx2ΓaΓx3Γx4Γa⊆ M.  It 

follows that aΓ(x1ΓaΓx2)Γa⊆ M ot T being commutative, 

aΓaΓaΓx1Γx2⊆ M or aΓaΓaΓx1Γx2Γx3Γx4⊆ M. 

 Let aΓaΓaΓx1Γx2⊆ M.  Then there exist x5,x6,x7,x8∈ T 

such that (aΓ)
4
aΓx1Γx2Γx5Γx6⊆ M or 

 (aΓ)
4
aΓx1Γx2Γx5Γx6Γx7Γx8 ⊆ M.  Let aΓaΓaΓx1Γx2Γx3Γx4⊆ 

M.  Then there exist y1, y2,y3 , y4∈ T such that 

(aΓ)
4
aΓx1Γx2Γx3Γx4Γy1Γy2⊆ M or  

(aΓ)
4
aΓx1Γx2Γx3Γx4Γy1Γy2Γy3Γy4⊆ M.   

Continuing in this way, we get for each integer n≥0 

(aΓ)
2n

aΓxΓy⊆ M for some x, y∈ T. 

Theorem 3.9:  Let A be a TΓ- ideal in a commutative 

ternary Γ– semiring T such that (aα)
n
a∈ A where a∈ T and 

α∈ Γ, n is a odd natural number then a∈ rad(A). 

Proof:Let M be any m –system in T containing a .  Then by 

theorem 3.8, (aα)
n
xβy ∈ M for some x,y∈ T and α, β∈Γ.  As A 

is a TΓ- ideal and (aα)
n
a, (aα)

n
xβy∈ A for some odd natural 

number n.  Therefore M∩A ≠ ϕ.  Therefore by theorem 3.6, a 

∈rad(A). 

We can deduce the following theorem by combining 

theorem 3.7 and theorem 3.9. 

Theorem 3.10:  Suppose that T is a commutative ternary 

Γ– semiringand A is a TΓ- ideal of T.  Then rad(A) = 

{a∈T/(aα)
n-1a∈ A for some odd natural number n+. 

Definition 3.11:  A TΓ- ideal A in a ternary Γ– semiring T is 

calleda prime radical TΓ-idealif rad(A) = A. 
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Note:In this paper we simply called a prime radical TΓ- 

ideal to be a radical TΓ- ideal. 

Theorem 3.12:  If A is a TΓ- ideal in a ternary Γ– semiring 

T then the following are equivalent. 

(1)  rad(A) = A 

(2) (aα)
n-1a∈ A implies a∈ A for some odd natural 

number n. 

Proof:  (1) ⇒ (2):  Let (aα)
n-1 a ∈ A then by theorem 3.9, a ∈ 

rad(A) = A. 

(2) ⇒ (1):  We know that A⊆rad(A).  Let a ∈rad(A).  By 

theorem 3.7, there exist an odd natural number n such that 

(aα)
n-1 a ∈ A.  Hence by hypothesis a ∈ A.  Hence rad(A) ⊆ 

A.  Therefore rad(A) = A. 

Definition 3.13:  A k-TΓ- ideal in a ternary Γ– semiring T is 

said to be a radical k-TΓ- ideal provided it is a radical TΓ- 

ideal. 

Definition 3.14:   A h-TΓ- ideal in a ternary Γ– semiring T 

which also is a radical TΓ- ideal is called a radical h-TΓ- 

ideal. 

Theorem 3.15:  Let A be a radical k-TΓ- ideal of a 

commutative ternary Γ– semiring T and P, Q be any two 

subsets of T then S = {x∈T/xΓPΓQ⊆ A+ is a radical k-TΓ- 

ideal. 

Proof:  S is clearly a TΓ- ideal of T.  Now, let x + y∈ S and x∈ 

S, y∈ T.  Then           (x+y)ΓpΓq⊆ A and xΓpΓq⊆ A for all p∈ P 

and for all q∈ Q.  So yΓpΓq⊆ A for all p∈ P and for all q∈ Q 

as A is a TΓ- ideal in T.  Hence y∈ S. 

 Consequently, S is a k-TΓ- ideal in T.  Let (xΓ)
n-1 x ∈ 

S for some odd natural number n, then (xΓ)
n-1

xΓpΓq ⊆ A for 

all p∈ P and for all q∈ Q which implies ((xΓ)
n-1x)  Γ((pΓ)

n-

1p)Γ((qΓ)
n-1q) ⊆ A for all p∈ P and for all q∈ Q as A is a TΓ- 

ideal in T.  Therefore (xΓpΓqΓ)
n-1xΓpΓq⊆ A for all p∈ P and 

for all q∈ Q.  So xΓpΓq⊆ A for all p∈ P and for all q∈ Q as A 

is a radical TΓ- ideal.  Thus xΓPΓQ⊆ A and so x∈ S.  Hence 

by theorem 3.12, S is also a radical TΓ- ideal. 

Theorem 3.16:  Let A be a radical h-TΓ- ideal of a 

commutative ternary Γ– semiring T and P, Q are two 

subsets of T then S = {x∈T/xΓPΓQ⊆ A+ is a radical h-TΓ- 

ideal. 

Proof:  ClearlyS is aTΓ- ideal of T.  Now, let x∈ T and x+ a1 

+t = a2+t for t ∈ T and for a1, a2∈ S.  Then(x+ a1 +t)ΓpΓq= 

(a2+t )ΓpΓq for all p∈ P and for all q∈ Q.  Therefore xΓpΓq + 

a1ΓpΓq+ tΓpΓq=  a2ΓpΓq+ tΓpΓq where tΓpΓq⊆ T and 

a1ΓpΓq⊆ A, a2ΓpΓq⊆ A.  So xΓpΓq⊆ A for all p∈ P and for all 

q∈ Q as A is a h-TΓ- ideal of T.  Hence x ∈ S. 

 Consequently, S is a h-TΓ- ideal.  The proof of the 

part that S is a radical TΓ- ideal is similar to that in theorem 

3.15. 

7)  By condition (1), A ⊆ rad(A).  So by condition (3), 

rad(A) ⊆ rad[rad(A)].  Let a∈ rad[rad(A)] and {Pi}i∈∆ be the 

family of prime TΓ- ideals of T such that A ⊆ Pi for alli∈∆.  

Then by definition rad(A) ⊆ Pi for alli∈∆.  Hence 

rad[rad(A)] ⊆ Pi. Therefore a∈ Pi for alli∈∆ implies that a∈ 

rad(A).  Therefore rad[rad(A)] = rad(A). 

Theorem 3.17:  In a ternary Γ– semiring intersection of 

any collection of radical TΓ- ideals is again a radical TΓ- 

ideal.  

Definition 3.18:  Suppose T is a ternary Γ– semiring with a 

ternary Γ–subsemiring A and a TΓ- ideal I, P = I⋂A is a TΓ- 

ideal.  If there is an another TΓ- idealJ such that I ⊆ J and P = 

J⋂A, then we say I can be enlarged to be aTΓ- ideal in T 

which also contracts to P. 

Theorem 3.19:  Let A be an m – system and N be a TΓ- 

ideal of a ternary Γ– semiring T such that N⋂A = ∅ then 

there exist a maximal TΓ- ideal M of T containing A such 

that M⋂A = ∅  moreover M is a prime TΓ- ideal of T. 

Theorem 3.20:  Let T be a commutative ternary Γ– 

semiringand A be a ternary Γ– subsemiringof T.  Let I be a 

radical TΓ- ideal of T such that aαbβc∈ I, a∈ A, b, c∈ T, α, 

β∈Γ imply either a∈ I or b ∈ I or c∈ I.  Then P = I⋂A is a 

prime TΓ- ideal in A.  Also I can be expressed as an 

intersection of prime TΓ- ideals each os which contracts to 

P. 

Proof:  Leta,b, c∈ A, α, β∈ Γ such that aαbβc∈ P.  Then 

aαbβc∈ I.Therefore by hypothesis either a∈ I or b ∈ I or c∈ 

I.Hence either a∈ P or b ∈ P or c∈ P.  So P becomes a prime 

TΓ- idealby corollary 3.4 

 Let X = ⋂{J/J is a prime TΓ- ideal of T with I⊆ J and 

J⋂A = P}.  Then I⊆ X.  To prove the reverse inclusion, let x  

∉ I.  Then the m – system M = {x+∪*dΓ(xΓ)
2n-1 x/d∈ A but d 

∉ P and n is a positive integer+ has empty intersection with 

I.  Then by theorem 3.19 there exist a maximal TΓ- ideal Q 

⊇ I with Q⋂M = ∅which is also prime. 

 Then P ⊆Q⋂A.Again q∈Q⋂A, qαxβx∈ Q, Q being a 

TΓ- ideal of T.  It follows that qαxβx ∉ M.  This together with 

definition of M and that q∈ A implies q∈ P.  Therefore Q⋂A 

⊆ P.  Hence P = Q⋂A.  Again x  ∉ Q as x∈ M and M⋂Q = ∅.  

Therefore x  ∉ X and so X ⊆ I. Consequently, I = X.  

 

IV. Conclusion: 

     In this paper mainly we studied about radical TΓ-ideals in 

ternary Γ-semirings. 
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