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. Introduction:

The notion of ternary I'— semiring was introduced by M.
SajaniLavanyaand D. MadhusudhanaRao in [5, 6] in the year
2015, as a natural generalization of ternary I'- ring and I'-
semiring. The notion of prime radical of an ideal is important
to the theory of semigroups, semirings as well as I'-
semigroups etc. In this paper we study prime I'- radicals in
ternary I'- semiring as mentioned in the abstract.

1. Preliminaries:
Definition 2.1[5]: The non empty sets T and I" together with a
binary operation called addition and ternary multiplication
denoted by juxtaposition is said to be a ternary I'— semiringif
T and T be two additive commutative semigroups satisfying
the following conditions.
(1) [[Xroxafxslyxaoxs] = [X100 [Xofxs yx4]oxs] = [X10x28 [X3
PX40xs]]
(i1) [(XaX2)axs Bxa] = [Xaoxs fxa] + [Xoooxs fxa]
(iii) [X1a(Xo+X3)Bxa] = [XaoxaBixa] + [X1003 Bxa]
(iv) [X10002B(Xs+ Xa)] =[Xa00r2 B3] + [Xa00x2 Bxa]
for all xq,Xp,X3 ,X4,Xs€ Tand a,f3,7,0 €T

Definition 2.2[5]: An element 0 in ternary I'— semiring T
such that 0 + a = a and Oaapb = aa0pb = aabp0 = 0 for all a,
beT ,a, PET. Then 0 is called the 0 — element or simply zero
of the ternary I'- semiring T.

Definition 2.3[5]:An element a of a ternary I'— semiring T is
said to be an identity provided acaft = taafa = aatfa =t for
allteT,aq pel.
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Definition 2.4[5]: A ternary I'— semiring T is said to be
commutative provided aabfc = bfcaa =caafb = baafc
=cobfa = aacfb for all a, b, ce T, o, p€T.

Definition 2.5[5]: An additive subsemigroup S of T is said to
be a ternary I'- sub semiring provided aabfce S for all g, b,
ceS.

Definition 2.6[5]:An additive subsemigroup A of T is said to
be a leftTI— ideal of T ifxayfa € A for all a€ A, X,ye T, o,
BET.

Definition 2.7[5]:An additive subsemigroup A of T is said to
be a lateralTI- ideal of T ifxaafy € A for all a€ A, X,ye T, o,
PET.

Definition 2.8[5]:An additive subsemigroup A of T is said to
be a rightTI'- ideal of T ifaaxfy € A for all a€ A, Xye T, aq,
Per.

Definition 2.9]5]: An additive subsemigroup A of T is said to
be a TI— ideal of T ifxayfa € A, xaafy € A and anxfy € A.

Definition 2.10: A TI- ideal A of a ternary I'- semiring T is
said to be a k-TT-ideal if for x,ye T, x+y€ A and X€ A then ye
A.

Definition 2.11: A TI- ideal A of a ternary I'- semiring T is
said to be a h-TT-ideal if for xe T, and for a; a,€ A, x+ a;.t
= apt, t € T implies x€ A.

Definition 2.12[5]:Aproper TI'- ideal P of a ternary I'-
semiring T is said to be a prime TI-ideal of T if for any three
TI- ideals A, B, Cof T, ATBI'C € P implies ACP or BCP or
CcP.
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Definition 2.13 [6]: Aproper TI'- ideal Q of T is said to be a
semiprimeTT-ideal of T if ATAT'A € Q implies ASQ for any
TT- ideal Aof T.

Definition 2.14: Anonempty subset M of a ternary I'-
semiring T is said to be an m- system if for each a, b, ce M,
there exists elements X;,X5,X3,X:0f T such that al'x;I'bI'X,I'c
€ Mor al X IXIbI'XsIXsE M or al'x{I'X,I'bI'xs['c'X,€ M or
X1 al XXX, I 'cE M.

1. Prime I' — Radical of a TI'- ideal:

Definition 3.1: Let T be a ternary I'- semiring and A be a TI'-
ideal of T. Then prime I' —Radical of A is denoted by rad(A)
is defined to be the intersection of all prime TT- ideals of T
each of which contains A.

Definition 3.2: A TT- ideal N in a ternary I'- semiring T is
said to be a nilpotent TI'- idealif (NI')*N = 0 for some natural
number n.

Theorem 3.3: In a ternary I'- semiringTthe following
conditions are equivalent.

(1) Pisaprime TI'- ideal of T.

(2) aIr'TrbrIrc € P , aIrTrTrbI'TrTrc € P ,
al'TITIbIr'TrcI'T € P ,TralrTrbI'rrTlc € P
impliesa €Porb € P or ce P.

(3) <a>I'<b>I'<c>C Pimpliesa EPorb €PorceP.

Corollary 3.4: A TI'- ideal of A of a commutative ternary
I'- semiringT is prime if and only if aabfc € P implies a € P
orbePorcePforalla b, ceT, a pET.

Theorem 3.5: For a TT- ideal A of a ternary I'- semiringT
we have the following.
(1) AcSrad(A)
(2) If P is a prime TI'- ideal of T then A < Piff
rad(A)c P
(3) If Bis a TI'- ideal of T satisfying A € B then
rad(A) S rad(B)
(4) rad(A) is semiprimeTTI - ideal of T.
(5) rad(A) = rad [(AI)® A], n being an integer and
n=0.
(6) rad(A) contains every nilpotent TI'- ideal of T.
(7) rad[rad(A)] = rad(A)
Proof: (1), (2), (3) follow immediately from the definition of
prime I' — radical.
4) Obviously rad(A) is a TI- ideal of T. Let CI'CI'C
Crad(A) where C is a TI- ideal of T. Now rad(A) = N{P;/ A
CP;, P;is a prime TT- ideal in T}. So CI'CI'C <P;, for all P; .
Then P; being prime, C <P;for allP;. Therefore C Srad(A),
proving raad(A) is a semiprimeTI - ideal of T.
5) Let A is a TI'- ideal of T, (AT)*'AC A, where n is an
integer and n>0. Hence by condition (3) rad [(AI)*'A]c
rad(A). Let a €rad(A). Now rad(A) = N{P;/AcP;,P;isa
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prime TI'- ideal in T}. Then a€P; for all P; . If possible let a
grad [(AI)®A]. Then there exist a prime TT- ideal Q in T
such that (AT)*"AC Q and a ¢ Q. Now Q being prime,
(AF)Z”AQ Q implies that AS Q. Hence Q is some P;. This
gives a contradiction.  Therefore a €rad [(AI)*'A].
Consequently rad(A) = rad [(AI)*" Al.

6) Let N be a nilpotent TI'- ideal of T. Then (NI')*'N = {0},
for some integer n>0. Hence (NI)*N € rad(A). So (NI')*'N
cP;for allP; containing A and P; is a prime TT- ideal. Then N
CP;for allP;. Therefore NSrad(A).

Theorem 3.6: Let A be a TI'- ideal in a ternary I'-
semiringT then rad(A) = {t€T/every m-system in T which
contains thas a non empty intersection with A}

Theorem 3.7: Let A be a TI'- ideal in a ternary I'-
semiringT. If a€rad(A) then there exist an integer n=0
such that (aa)*"a€ Afor a €T.

Theorem 3.8: Suppose T is a commutative ternary I'-
semiring and M is an m — system in T containing a. Then
there exist an integer n>0 such that (al)*™al'xly & M
where X,y €T.
Proof: Since a € M, there existxy,X;,Xs X4€ T such that
al'x;ral'x,Jac€ M or a’xI'xofal'xsgI'xJJa < M or
alxiI'x.rral'xsI'al'x,€ M or xJal'x.lal'xs['x,JJac M. It
follows that al'(x;I'al'x;)l'ac M ot T being commutative,
al'al'al'x{I'x,€ M or al"al'al X I X,I'Xs['X4,S M.

Let al"al'al'x;I'x,€ M. Then there exist Xs,Xg,X7,Xg€ T
such that (al')*alx,IX,I'xsI'XsS M or
(aF)“al“xll“le“xsl“xel“xﬂ“xg C M. Let allalral'x{I'x,I'xs['x,S
M. Then there exist yi, VYaYys , Y4s€ T such that
(al)*arxIxIxsx [y TY,S M or
(ar)*arx DXl xsIX Ly Ty lysly,.S M.
Continuing in this way, we get for each integer n>0
(al™arxI'yc M for some x_ ye T.

Theorem 3.9: Let A be a TI'- ideal in a commutative
ternary I'— semiring T such that (aa)"a€ A where a€ T and
a€ T, n is a odd natural number then a€ rad(A).

Proof:Let M be any m —system in T containing a . Then by
theorem 3.8, (aa)"xBy € M for some x,y€ T and o, SET. As A
is a TT- ideal and (aa)"a, (aa)"xpy€ A for some odd natural
number n. Therefore MNA # ¢. Therefore by theorem 3.6, a
€rad(A).

We can deduce the following theorem by combining
theorem 3.7 and theorem 3.9.

Theorem 3.10: Suppose that T is a commutative ternary
I'- semiringand A is a TI'- ideal of T. Then rad(A) =
{a€T/(aa)"" a€ A for some odd natural number n}.

Definition 3.11: A TI'- ideal A in a ternary I'— semiring T is
calleda prime radical TI-idealif rad(A) = A.
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Note:In this paper we simply called a prime radical TI'-
ideal to be a radical TT'- ideal.

Theorem 3.12: If A is a TT'- ideal in a ternary I'- semiring
T then the following are equivalent.

(1) rad(A)=A

(2) (ao)™'a€e A implies a€ A for some odd natural

number n.

Proof: (1) = (2): Let (aa)™ a € A then by theorem 3.9, a €
rad(A) = A.
(2) = (1): We know that Acrad(A). Let a €rad(A). By
theorem 3.7, there exist an odd natural number n such that
(aa)™ a € A. Hence by hypothesis 2 € A. Hence rad(A) €
A. Therefore rad(A) = A.

Definition 3.13: A k-TT- ideal in a ternary I'— semiring T is
said to be a radical k-TT- ideal provided it is a radical TI'-
ideal.

Definition 3.14: A h-TT- ideal in a ternary I'— semiring T
which also is a radical TT'- ideal is called a radical h-TT-
ideal.

Theorem 3.15: Let A be a radical k-TI'- ideal of a
commutative ternary I'— semiring T and P, Q be any two
subsets of T then S = {X€T/XI'PI'QE A} is a radical k-TT-
ideal.

Proof: S is clearly a TT- ideal of T. Now, letx + y€ S and x€
S, ye T. Then (x+y)I'pI'q< A and xI'pI'q< A for all pe P
and for all ge Q. So yI'pI'q< A for all p€ P and for all ge Q
asAisaTrI-ideal in T. Hence yeS.

Consequently, S is a k-TI'- ideal in T. Let (xI)™ x €
S for some odd natural number n, then (XI')""'xI'pI'q € A for
all pe P and for all g€ Q which implies ((xI')"'x) T'((pI’)™
') ((qr)"'q) € A for all p€ P and for all g€ Q as Ais a TTI'-
ideal in T. Therefore (xI'pI'ql)"x'pI'qS A for all p€ P and
for all ge Q. So xI'pI'q< A for all pe P and for all g€ Q as A
is a radical TI'-ideal. Thus XI'PT'Q<S A and so X€ S. Hence
by theorem 3.12, S is also a radical TT'- ideal.

Theorem 3.16: Let A be a radical h-TI- ideal of a
commutative ternary I'- semiring T and P, Q are two
subsets of T then S = {X€T/XI'PI'QC A} is a radical h-TT-
ideal.
Proof: ClearlyS is aTT- ideal of T. Now, letxe T and x+ a;
dA=axntfort € T and for a; @€ S. Then(x+ a;.H)Iplg=
(a,+t )I'pI'q for all pe P and for all ge Q. Therefore xI'pI'q +
aI'pl'g+ trpl'g= aI'pl'qt tIplq where trpl'qc T and
a,I'pl'gc A, a,I'pI'qc A. So xI'pI'q< A for all p€ P and for all
g€ Qas Aisah-TrI- ideal of T. Hence x € S.

Consequently, S is a h-TT- ideal. The proof of the
part that S is a radical TI'- ideal is similar to that in theorem
3.15.
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7) By condition (1), A € rad(A). So by condition (3),
rad(A) < rad[rad(A)]. Let a€ rad[rad(A)] and {P;}iea be the
family of prime TT- ideals of T such that A < P; for alli€A.
Then by definition rad(A) < P; for allicA.  Hence
rad[rad(A)] & P;. Therefore ae P; for allieA implies that a€
rad(A). Therefore rad[rad(A)] = rad(A).

Theorem 3.17: In a ternary I'- semiring intersection of
any collection of radical TT - ideals is again a radical TI'-
ideal.

Definition 3.18: Suppose T is a ternary I'— semiring with a
ternary I'-subsemiring A and a TT- ideal I, P = INA is a TI-
ideal. If there is an another TT'- ideal) suchthatl| € J and P =
JNA, then we say I can be enlarged to be aTT-idealin T
which also contracts to P.

Theorem 3.19: Let A be an m — system and N be a TI'-
ideal of a ternary I'- semiring T such that NNA = @ then
there exist a maximal TT- ideal M of T containing A such
that MNA = @ moreover M is a prime TI'- ideal of T.

Theorem 3.20: Let T be a commutative ternmary I'-
semiringand A be a ternary I'- subsemiringof T. Let | be a
radical TT - ideal of T such that aabfic€ 1, a€ A, b,ce T, ¢,
PET imply eithera€ lor be I orce . Then P =1NAis a
prime TI- ideal in A. Also | can be expressed as an
intersection of prime TT- ideals each os which contracts to
P.

Proof: Letab, ce A, o, f€ T such that aabfice P. Then
aabpfce 1.Therefore by hypothesis either a€ I or b € I or ce
I.Hence either a€ P or b € P or c€ P. So P becomes a prime
TT- idealby corollary 3.4

Let X = N{J/] is a prime TI'- ideal of T with IS ] and
JNA = P}. Then IS X. To prove the reverse inclusion, let x
¢ 1. Then the m - system M = {x}u{dI"(XI')*"* x/d€ A but d
¢ P and n is a positive integer} has empty intersection with
I. Then by theorem 3.19 there exist a maximal TT- ideal Q
2 | with QNM = @which is also prime.

Then P CQNA.Again geQNA, gaxfx€ Q, Q being a
TT- ideal of T. It follows that goxfx € M. This together with
definition of M and that g€ A implies g€ P. Therefore QNA
C P. Hence P = QNA. Again x € Q as X M and MNQ = .
Therefore x € Xandso X C I. Consequently, I = X.

IV.  Conclusion:
In this paper mainly we studied about radical TT-ideals in
ternary I'-semirings.
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