
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 2 Issue: 6 107 – 110

107
IJFRCSCE | June 2016, Available @ http://www.ijfrcsce.org

Designing with RoBs for High Performance VLIW Architecture

R. Ramesh Babu, Research Scholar, Dept. of ECE, Sunrise University, Alwar, Rajasthan

Dr. Sachin Saxena, Supervisor, Department of ECE, Sunrise University, Alwar, Rajasthan

Abstract—VLIW architecture has become widespread due to the combined benefits of simple hardware and compiler extracted instruction level

parallelism. The VLIW instruction set architecture and its hardware implementation is tightly coupled and a novel simultaneous multithreading

VLIW architecture with dynamic dispatch mechanism which uses RoBs complex logic to maximize ILP has been proposed. Since the resulting

dynamic instruction schedule of many applications seldom changes, it is reasonable to store and reuse the schedule instead of reconstructing it

each time. The new VLIW architecture shows that it can effectively increase the processor efficiency which improves the performance.

Keywords—VLIW, ILP, RoB, dynamic dispatch.

__*****___

I. INTRODUCTION

 With the advent of RISC architectures, the processor is

now recognized as a deficient instruction set. Instruction set

compatibility is at the heart of the desktop microprocessor

market. Because the application programs that end users

purchase are delivered in binary (directly executable by the

microprocessor) form, the end users desire to protect their

software investments creates tremendous instruction-set

inertia. RISC chips use always 32 bits long fixed-length

instructions. It wastes memory for complex programs, the

instructions are easier and faster to execute. Because it has

to deal with some types of instructions, RISC chips require

less transistors than CISC chips and get higher performance

at similar clock speeds.

 Since the early days, asynchronous circuits have been

used in many interesting applications. The results show that

asynchronous circuits have advantages of low power

consumption and high performance. In the embedded

systems that are sensitive to power dissipation, there is a

problem for us to solve that how to make our processors

have lower power consumption without performance loss.

 VLIW instructions are necessarily longer than RISC or

CISC instructions, thus the name Very long instruction

word or VLIW refers to a processor architecture designed

to take advantage of instruction level parallelism (ILP).

Whereas conventional processors execute instructions one

after another, this processor accepts programs that can

explicitly specify instructions to be executed at the same

time. This type of processor architecture is intended to allow

higher performance without the inherent complexity of some

other approaches. In VLIW machine, instructions fetched by

processor in a given cycle are to be performed by several

functional units. It is important to dispatch these instructions

to their destinations correctly. The design of the dispatch

unit in these processors is a significant impact of the

implementation of a sub system. Rapidly and correctly

dispatching the instructions is the necessity to prevent the

performance from the bottleneck.

 VLIW processors have wide acceptance in the embedded

domain due to hardware simplicity, low cost and low power

consumption. To exploit high Instruction Level Parallelism,

VLIWs need to be designed with a significant issue width.

However, the centralized Register File (RF), with all the

Functional Units (FUs) connected to it, becomes a

bottleneck because of an increase in RF delay, power

consumption and area. Clustered VLIW architectures have

multiple RFs and cluster the FUs according to the RFs they

are connected to. Many VLIWs have been designed using

the clustered approach. Some applications do not take

advantage of the high issue width available in a VLIW

processor and the processor is heavily underutilized.

 In the context of VLIW architectures, processor

underutilization can be characterized in terms of vertical and

horizontal waste. Vertical wastes are the cycles where no

operations are issued at all. Horizontal waste is the

underutilization of the issue width of the processor, i.e. the

number of operations issued in a cycle is less than the issue

width. Several multithreading techniques have been

proposed to reduce the vertical and horizontal waste in the

processor. VLIW simply moves complexity from hardware

into software.

 Traditional approaches to improving performance in

processor architectures include breaking up instructions into

sub-steps so that instructions can be executed partially at the

same time, dispatching individual instructions to be

executed completely independently in different parts of the

superscalar processor, and even executing instructions out-

of-order. These approaches all involve increased hardware

complexity because the processor must make all of the

decisions internally for these approaches to work.

 The VLIW approach depends on the programs

themselves providing all the decisions regarding which

instructions are to be executed simultaneously. As a

practical matter this means that the compiler software

becomes much more complex, but the hardware is simpler

than many other approaches to parallelism. In this approach

code generation makes it useful. However, these optimized

capabilities are useless unless compilers are able to identify

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 2 Issue: 6 107 – 110

108
IJFRCSCE | June 2016, Available @ http://www.ijfrcsce.org

relevant source code constructs and generate target code.

Therefore, programmers must be able to express their

algorithms in a manner that makes the compiler's task easier.

 As SMT exploits some of the unused instruction slots by

converting thread-level parallelism (TLP) to ILP, a

processor with SMT can issue multiple instructions from

multiple threads each cycle. Therefore, SMT improves the

processor throughput, raises the functional unit utilization,

and exploits maximum ILP by issuing as many instructions

as possible from multiple threads in any given cycle.

II. INSTRUCTION LEVEL PARALLELISM

 Very Long Instruction Word (VLIW) processors have

wide acceptance in the embedded domain due to hardware

simplicity, low cost and low power consumption. To exploit

high Instruction Level Parallelism (ILP), VLIWs need to be

designed with a significant issue width. However, the

centralized Register File (RF), with all the Functional Units

(FUs) connected to it, becomes a bottleneck because of an

increase in RF delay, power consumption and area Clustered

VLIW architectures have multiple RFs and cluster the FUs

according to the RFs they are connected to.

 Many VLIWs have been designed using the clustered

approach. Some applications do not take advantage of the

high issue width available in a VLIW processor and the

processor is heavily underutilized. In the context of VLIW

architectures, processor underutilization can be

characterized in terms of vertical and horizontal waste.

Vertical wastes are the cycles where no operations are

issued at all. Horizontal waste is the underutilization of the

issue width of the processor, i.e. the number of operations

issued in a cycle is less than the issue width. Several

multithreading techniques have been proposed to reduce the

vertical and horizontal waste in the processor.

 Architectures exploiting ILP at compile time, such as

VLIW and transport triggered architecture (TTA) may

satisfy the requirements. They can be further enhanced by

using asynchronous circuits to significantly reduce power

consumption. In asynchronous processors with architectures

exploiting ILP at compile time. When designing

asynchronous VLIW or TTA processors, the distribution of

control introduces some serious problems, and errors may

occur because of the variable latencies of operations.

 Instruction-Level Parallelism is a measure of how many

operations in a computer program can be executed

concurrently. An ILP processor has multiple function units

that can be engaged simultaneously executing multiple

operations. In Figure.1 showing a simple five-stage

processor pipeline in the multiple-issue case on the right,

there can be two operations in the execution stage in a single

cycle. In the same cycle multiple register file accesses can

occur (write backs in the WB stage and operand reads in the

ID stage), requiring a multi-ported register file.

I

 CYCLES

 Fig.1 ILP CYCLES

 I Fig.2.Mutiple thread CYCLES

INSTRUCTION FORMAT

 The Instruction Set of processor consists of 16-bit

instructions and 32-bit instructions. Most frequently used

instructions, such as addition, subtractions, and/or, etc, have

either 16-bit or 32-bit instruction formats. The Processor

instruction set picks up the parallel information from the

instruction type and the register file assignment field.

According to the register file assignment field, the

instructions are grouped into two slots, slot x and slot y, and

each slot consists of up to three instructions. The slot x and

slot y can be executed concurrently, and the instructions in

the same slot can be dispatched in parallel.

255 224 192 160 128 96 64 32 0

Ins 8 Ins 7 Ins 6 Ins 5 Ins 4 Ins 3 Ins 2 Ins 1

Fig.3: The block diagram of instruction format

III. DYNAMIC DISPATCH

 When multiple threads contend for one functional unit,

an issue conflict on that functional unit occurs. To quantify

the issue conflicts, the issue conflict rate is introduced to

indicate the most wanted functional unit for both threads in a

given period. In the case of more than one execution packet

in the fetch packet, the dispatch unit needs some more

pipeline cycle to finish dispatching these eight instructions.

 Conventional VLIW assign the instructions to functional

unit at compile-time with the functional unit assignment

field in the operation code. The instructions of an execution

packet may be performed by different functional units. The

dispatch unit checks the aims of them and delivers them to

the proper places, where pre-process and decode instructions

and then perform the operations.

 In the case of more than one execution packet in the

fetch packet, the dispatch unit needs some more pipeline

cycle to finish dispatching these instructions. Some of the

stages of the pipeline have to be stopped, such as the

IF ID EX ME WB

IF ID EX ME WB

 IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

IF ID EX ME WB

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 2 Issue: 6 107 – 110

109
IJFRCSCE | June 2016, Available @ http://www.ijfrcsce.org

instruction fetch unit; while some of other stages, ALUs,

ought to run normally. When the final execution packet of

the fetch packet has been delivered, the pipeline continues.

 from memory

 from/to Memory

Fig.4. Dynamic dispatch mechanism

 Figure.4 shows a block diagram of the VLIW

architecture. In the VLIW architecture, the scheduler engine

fetches instructions from the instruction cache and executes

them first using a simple pipelined processor the primary

processor. In addition, its scheduler unit dynamically

schedules the trace produced during this execution into

VLIW instructions, placing them as blocks of instructions in

the cache. If the same code is executed again, it is then

fetched by the VLIW engine from this cache and executed in

a VLIW fashion. In the VLIW architecture, the scheduler

engine provides object code compatibility, and the VLIW

engine provides VLIW performance and simplicity.

 Dynamic dispatch mechanism is also beneficial to the

code density. With static dispatch mechanism, the

instruction mapped to different functional units requires

different instruction codes, even though the instruction has

the same function. The dynamic dispatch unit issues

instructions to functional units according to the instruction

type, so that an instruction has a uniform instruction code.

This orthogonal instruction set maintains a compact code

density.

IV. PROPOSED WORK

 Additional set of hardware registers called reorder

buffers (ROBs). ROBs stores results of instructions (in

shadow) that have completed but not yet committed.

Instructions enter ROB out of order and instruction leaves

ROB in order. Results of an instruction become visible

externally when it leaves ROB and force them to complete

in order. Elimination of store buffers and replacing them by

ROBs in VLIW architecture. Exceptions are masked until

instructions commits.

 Figure.5 shows a block diagram of a VLIW processor

with RoBs implementation. The implementation consists of

a collection of execution that are fed operations from an

instruction queue and operands from a register file and data

cache.

 The new VLIW processor divides the processing of

instruction cycle into number of steps during this stage first

it will fetch the instructions, and then the instructions are

dispatched to the instruction queue until the required

operands enter, the instructions remains in the queue after

that the instruction is allowed to leave the queue. The

instruction is moved into the appropriate execution unit. The

results are placed into the RoBs. Only after all previous

instructions which have to be executed before this

instruction have their results written back to the register file

and then this result is written back to the register file.

 from memory

 from/to Memory

Fig.5. Dynamic dispatch mechanism with RoBs

 The concept dynamic dispatch is to allow the processor

to avoid a in-order of instructions pushed into the vacant

slots that occur when the operands needed to perform an

operation are unavailable. In the dynamic dispatch

scheduling with RoBs the VLIW processor avoids the slot

that occurs during the instruction dispatch of the in-order

processor when the instruction is not completely ready for

the processing due to missing data.

V. CONCLUSION

 The dispatch unit of the VLIW dynamically dispatches

instructions to the functional units at compile-time rather

than at run-time, such that the multiple threads are reduced.

The unit recognizes the proper instructions to allocate in

every cycle, and then dispatches them to the accurate

functional units.

 We propose dynamic VLIW processor with RoBs that

saves energy when applications have regular behaviour

Instruction cache

Fetch unit,

VLIW cache

Register file

Execution
unit-1

Execution
unit-2

Execution
unit-1

-1

Execution
unit-3

Execution
unit-4

Decoder,

Dispatcher

Data cache Instruction cache

Fetch unit,

VLIW cache

Register file

Execution
unit-1

Execution
unit-2

Execution
unit-1

-1

Execution
unit-3

Execution
unit-4

Decoder,

Dispatcher

Data cache

RoBs

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 2 Issue: 6 107 – 110

110
IJFRCSCE | June 2016, Available @ http://www.ijfrcsce.org

(branch predictability and cache misses) by running in

VLIW mode and maintaining the performance of a regular

VLIW processor. Our proposals can benefits from the RoB

logic to detect when regular code executes. When the code

becomes a hotspot, it switches the back end execution mode

to VLIW, saving power from the dynamic dispatch with

RoBs structures not used and by turning off the functional

units not required.

 The advantage of VLIW processor grows as the

instruction pipeline deepens and the speed difference

between main memory or cache memory and the processor

increases.

REFERENCES

[1] Manoj Gupta, Ferm´ın S´anchez,Josep Llosa 978-1-4244-

6443-2/10/$26.00 ©2010 IEEE, “A Low Cost Split-Issue

Technique to Improve Performance of SMT Clustered

VLIW Processors”.

[2] Zheng Shen, Hu He,Yihe Suna at the National Natural

Science Foundation of China (NSFC) under grant

No.60236020 IEEE 2009 12th Euromicro Conference on

Digital System Design / Architectures, Methods and Tools

“Simultaneous Multithreading VLIW DSP Architecture

with Dynamic Dispatch Mechanism”.

[3] Yong Li, Zhi-ying Wang and Kui Dai, Seventh

International Conference on Computer and Information

Technology, 0-7695-2983-6/07 © 2007 IEEE DOI

10.1109/CIT.2007.53, "A Low-Power Application Specific

Instruction Set Processor Using Asynchronous Function

Units”.

[4] Qingwei Zheng, Zhaolin Li, Jianfei Ye, Chipin Wei and

Jiajia Chen, 2010 Second Pacific-Asia Conference on

Circuits, Communications and System (PACCS) ©2010

IEEE,“Implementation of an Instruction Dispatch Unit

Applied to Digital Signal Processors with VLIW

Architecture”.

[5] Mengjun Sun, Zheng Shen, Hu He, 978-1-4244-3870-9/09

©2009 IEEE,“An Efficient Parallel Instruction Execution

Method for VLIW”.

[6] Chan-Hao Chang,DianaMarculescu Proceedings of the

2006 Emerging VLSI Technologies and Architectures

(ISVLSI’06) 0-7695-2533-4/06 - 2006 IEEE “Design and

Analysis of a Low Power VLIW DSP Core”.

[7] Hsien-Ching Hsieh, Shui-An Wen, Che-Yu Liao, Huang-

Lun Lin, Po-Han Huang,Shing-Wu Tung at 2011

International Symposium on Intelligent Signal Processing

and Communication Systems (ISPACS) December 7-9,

2011 “Low Power Design and Dynamic Power

Management System for VLIW DSP Subsystem” .

[8] Emre Ozer and Thomas M. Conte, IEEE transactions on

parallel and distributed systems, vol. 16, no. 12, December

2005. “High-Performance and Low-Cost Dual-Thread

VLIW Processor Using Weld Architecture Paradigm”.

