
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 3 Issue: 1 09 – 13

9
IJFRCSCE | January 2017, Available @ http://www.ijfrcsce.org

Development of Unified Framework for Discovery and Negotiation Requirement

for new services in Service Oriented Architecture

Mohd Ashraf

Associate Professor, Computer Science & Engineering

Maulana Azad National Urdu University, Hyderabad

E Mail: ashraf.saifee@gmail.com

Abstract: Service oriented architecture is a style of software design where services are provided to the other component through a

communication protocol over a network. It is an emerging approach that addresses the requirement of loosely coupled, standards based and

protocol independent distributing computing. To Build an SOA a highly distributable communication and integration backbone is required. In

this paper, Authors presents the unified framework for discovery and negotiation requirement for new services in Service Oriented Architecture.

Specially, this paper also address the issue to negotiate and search the new services, differentiating between several old services and the new

services that are similar but not identical based on specification.

Keyword: Software Engineering, Service Oriented Architecture, Software Requirement, Software Reuse specification Requirement.

__*****___

I. INTRODUCTION

Software engineering is a systematic approach of

development, operation and maintenance of software. In

software engineering, Service-Oriented Architecture,

different method which is used for software development

with the help of services and these services may

communicate with other services also. Service-Oriented

Architectures (SOA) is becoming increasingly widespread

in a variety of computing domains such as enterprise and e-

commerce systems, which continue to grow in size and

complexity. These systems are expected to adapt not only to

the fluctuating execution environments, but also to changes

in their operational requirements. SOA is a collection of

different services and these services can communicate to

each other using message passing (message passing include

simple data passing or coordination of different activates).

Software architecture describes the system’s components

and their interaction at the high level. These components are

not distributed objects and work as a module which is

deployed onto a server as a single unit along with other

components and the interaction between the components is

called “connecters”.

Using Service-oriented Architecture, Software quality can

be improved as well as cost will reduce with more reusable

component in software engineering. Reusable components

are designed to perform specific functions. These are

independent and pre-built pieces of programming code.

Therefore, it is important and productive to conduct research

on how to develop software with service –oriented

computing technology.

There is not enough research and practices to implement

“register, find, bind and execute” paradigm and make

practical and cost-effective. So we need to analyze this

process deeply to provide practical architectures and

methodologies for reusable services. The impact of

reusability in SOA is innovative. The component

development for providing various services is a difficult task

for a Service Oriented System. It is not efficient to develop a

new component for a new service every time as it would not

be economical and also it is difficult to integrate it with the

Legacy System.

The structure of the paper is as follows: Section 2 describes

related work. Section 3 describes different architectural

practices for integrating reusable services and architecture.

Section 4, describes unified model for discovery and

negotiation for new services in SOA. Finally, Section 5,

summarizes the main conclusions from this paper.

II. RELATED WORK

Service-Oriented Architecture (SOA) is a software

architecture style that has recently gained in popularity

because of its potential to maximize reuse, operability, and

flexibility. SOA achieves the aforementioned benefits by

dividing the software architecture into three main

components: (a) service providers (b) service consumers,

and (c) service brokers.

To achieve a SOA, the players must interact in a

specification, as shown in Figure 1.

Figure1: Service-Oriented Architecture

Tai, et al. [1], address the problem of transactional

coordination in service-oriented computing. The authors

introduce the concept of system support for transaction

coupling modes as the policy-based contracts guiding

transactional business process execution. An SOA requires

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 3 Issue: 1 09 – 13

10
IJFRCSCE | January 2017, Available @ http://www.ijfrcsce.org

that developers discover at development time service

descriptions in repository systems and, by reading these

descriptions they are able to code client applications that can

(at run time) bind to and interact with services of a specific

type i.e., compliant to a certain interface and protocol). To

address this problem, Deora, et al[2]., propose a quality of

service management framework based on user expectations.

This framework collects expectations as well as ratings from

the users of a service and then the quality of the service is

calculated only at the time a request for the service is made

and only by using the ratings that have similar expectations.

Similar research efforts are reported in Patil, A.A. and

Meteor-S[3]. The AI and semantic Web community has

concentrated their efforts in giving richer semantic

descriptions of Web services that describe the properties and

capabilities of Web services in a computer-interpretable

form. For this purpose,

DAML-S ,Rouvellou, et al.[4] language has been proposed

to facilitate the automation of Web service tasks including

better means of Web service discovery, execution,

“automatic” composition, verification, and execution

monitoring. In addition, in Jaeger, et al. [5], an approach is

described that builds on top of existing Web services

technologies and combines them with some concepts

borrowed from the semantic web to leverage web service

discovery and composition. This approach is captured by the

METEOR-S Web Service Annotation Framework

(MWSAF). In the basic SOA provides a simple browsing-

by-business-category mechanism for developers to review

and select published services. In [15], a hybrid matching

approach is suggested, combining semantic and syntactic

comparison algorithms of WSDL documents. Comparable

research efforts have been reported in [6].

Reusability Problem of a component in service and

different Architectures for Services

It has been discussed enough that why it is difficult to

develop a new service for every time but along with the

development of a new service it is similar difficult to reuse

an existing component for new services also. A traditional

software component cannot be designed and applied in the

same way as the reusable component. The main difficulty

for the reusable component is to meet the all specifications

with the implementation logic. We required two kinds of

effort, for making services reusable, one is that we provide

the services whose development is difficult and needed an

advanced development environment which is difficult or

expensive for application developers to build or purchase.

The other one is that we need to make the service easily

applicable and required cheep service application tools that

can be installed easily.

Krueger proposed a framework in 1992 to evaluate software

reusability with the following four aspects [7] abstraction: a

reusable component should have a specific level of

abstraction that avoids the software developers to sift the

details of it; selection: a reusable component should be easy

to locate, compare, and select; specialization: a group of

reusable components should be generalized and the

generalized form should be easy to be specialized to an

application; and integration: There must be an integration

framework to help reusable components be installed and

integrated into newly developed application, Sarukkai,

S.[8]. From these four criteria, abstraction and specialization

for service are definite.

A service as a good abstraction should be affordable,

attractive, necessary, professional and trustworthy.

Affordable means purchasing a service should be cheaper

than developing by developers themselves. Attractive means

a service should provide exciting performance. Necessary

means a service should be necessary for developing specific

applications; Professional means the providers should have

strong experiences and background for the services and

trustworthy means it is safe to use the services provided. If

we want to achieve these goals it is important to select and

integrate the service and a good architecture help for

achieving these goals [9].

• Architecture for Centralized service center

This architecture makes the Selection easy because the

number of service centers is limited and definite. For

Integration, a service is applied into and application is

restricted by service center. In this architecture application

providers are not so much flexible. This architecture is not

appropriate because some time large quantities of cheap

workstations and desktop computers are available. This is a

practical solution for many complicated services such as

Global Positioning System (GPS) services, Coordinated

Universal Time (UTC) services, weather forecast services

and bioinformatics services.

 This architecture is used in National Aeronautics and Space

Administration (NASA) and the Europe Space Agency. This

center might need to install powerful super computers that

are normally not afforded to application developers. It also

needs to provide large databases that normally application

developers are unable to be managed. The volume of

database should be greatly superior to any database

managed by an application developer. It is also installed for

specific expensive systems for specific services.

Figure 2: Architecture for Centralized service center

Architecture for Distributed Service Center

This architecture works same as centralize service center for

both process selection and integration. The only difference

is the construction of the center but not the service

provision. It provides large quantities of services and

equipped with high speed networks. The bandwidth should

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 3 Issue: 1 09 – 13

11
IJFRCSCE | January 2017, Available @ http://www.ijfrcsce.org

support the rush service hours without significant delay for

satisfactory services. This architecture is appropriate to large

number of service requests with small number of data to be

processed. This architecture can be found in VSM [2].

Figure 3: Architecture for distributed Service Center

• Architecture for Distributed service providers with

Centralized service center

In this architecture Selection is easy as application

developer only contact to service registry. This service

registry only stores the service specification not the real

services. So this architecture makes the Integration very

flexible. This architecture helps for making a service

registry and many small service providers. And each service

provider only provides small number of services.

In this architecture only a single computer is responsible for

accepting and replying the request and only service provider

will accept and reply for the service request.

Figure 4: Distributed service providers with centralized

Service center

Architecture for Distributed service providers with

Distributed service registry

Figure 5: Distributed Service providers with Distributed

Service Registry

In this architecture the Selection and Integration is more

flexible, but this architecture is also very complex. It

requires special consideration of service registry, service

negotiation and service provisions. Much of the literature in

service computing is trying to contribute within these types

of architectures (Sarukkai, S.,2005). With this architecture,

service providers are located at different computers with

different URLs. We call them independent service

providers. The service registries are also distributed on

different computers.

All of the service providers form a service network. The

application developers will broadcast or multicast their

requests to all the networked computers, collect the replies,

compare and select one service provider, sign a contract and

send out the service request. Handorean and Roman [8],

proposed a similar architecture. With this architecture, both

the service providers and the application developers may

specify the services. It needs a lot of negotiation for the two

parties of the service to make an agreement [6].

Proposed Model for Discovery and Negotiation of the

New Services

This paper proposes a combined model for service discovery

and negotiation of new service. Author proposed the

discovery method and new service negotiation method. In

this process, Service requesters can be either arbitrary

application developers or other service providers. A service

provider needs to register its services with a service registry

and provide services directly to interested parties. Each

service may have multiple service interfaces to meet the

needs of different requesters, and requesters can

dynamically discover the interfaces they require. Making

discovery-based service abstraction is challenging.

Following are the steps involved in the proposed model for

discovery and negotiation of new Service in Service

Oriented Architecture

Step 1: Firstly, all service and negotiation threads are

discovered, and specifications are searched.

Step 2: If specifications are exactly matched

a) Then available service is searched and provides the

service.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 3 Issue: 1 09 – 13

12
IJFRCSCE | January 2017, Available @ http://www.ijfrcsce.org

b) If specification is not matched then request gets

rejected and will search for new service. Now it

will check the interface with matching parts and

send request for the same.

Step 3: If request is served then prepare the contract

document otherwise search for new one.

Step 4: The new search checks whether the new service is

posted and prepare the contract otherwise

negotiation is done for the provided service. If

service is not negotiable then customer can exit

from the process.

Step 5: In this model modification can be done in the new

service before or after negotiation, then bind and

execute.

Step 6: After contract documents are sent to the request or

the service is bind and executed, and specifications

are sent to the registry.

III. CONCLUSION

The SOA paradigm has the potential to offer significant

benefits to software systems development, maintenance, and

reuse. However, many of SOA’s benefits are not guarantee

just by implementing a SOA. Therefore it is necessary for

researchers and developers to address the important software

architecture and reuse issues prior to creating a SOA. This

paper has discussed the better framework for discovery and

negotiation requirement for the new services and the

architecture issue for adding new service to the repository.

In summary, good architectural design practices and related

issue are necessary for composing discovery and negotiation

threads for new service.

REFERENCES

[1]. Tai, S., Mikalsen, T., Wohlstadter, E., Desai, N.,
Rouvellou, I., (2004). “Transaction policies for
service-oriented computing” Data Knowl. Eng.
51(1), pp. 59–79.

Service Discovery and
Negotiation Threads

Search the request in the
Specification

Search One ?

Request to new Interface

Requested
Agree ?

Search Avaialable

Got the
service ?

Contract sent out to the
requester

Reject the request

Is new Service
posted ?

Prepare a contract and
compare with available

new contract

Request the contract of the
new service and check that
contract is signed for the

same service or not

Get One ? Negotiable

Get new contract or
modified contract and then

bind & execute

Send out the service
Specification

Want to
exit

 Exit

 Exact Found Nothing in Service

 New Search

 Exact contract is found
 Yes

 Yes

 Yes

 Yes

 No

 No

 No

 No

 No

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248

Volume: 3 Issue: 1 09 – 13

13
IJFRCSCE | January 2017, Available @ http://www.ijfrcsce.org

[2]. Deora, V., (2003). “A quality of service
management framework based on user
expectations” Proceedings of the First
International Conference on Service Oriented
Computing (ICSOC03), Springer, Heidelberg.

[3]. Patil, A.A.,Meteor-S, (2004). “Web service
annotation framework” WWW ’04: Proceedings of
the 13th international conference on World Wide
Web, pp. 553–562. ACM Press, New York.

[4]. Brown, A., Johnston, S., and Kelly, K., (2002).
“Using Service- Oriented Architecture and
Component-Based Development to Build Web
Service Applications”, A Rational Software White
Paper, Rational Software Corporation.

[5]. Jaeger, M.C., Tang, S., (2004). “Ranked
matching for service descriptions using DAML-S”
Grundspenkis, J., Kirikova, M., (eds.),
Proceedings of CAiSE’04 Workshops, pp. 217–
228. Riga Technical University Riga, Latvia,

[6]. Ding, X., (2004). “Similarity search for Web
services” Proceedings of the 30th VLDB
Conference, pp. 372–383,

[7]. Deora, V., (2004). “Incorporating QoS
specifications in service discovery” Proceedings
of WISE Workshops, Lecture Notes of Springer
Verlag.

[8]. Sarukkai, S., (2005). “Identity-Based Service-
Oriented Architecture”, Web Service Journal,
Feb., http://www.syscon.
com/story/?storyid=48038&DE=1

[9]. „ Haibin Zhu, (2005). “Building Reusable
Components with Service-Oriented Architectures”
0-7803-9093-8/05 IEEE.

[10]. Budd T., (2002). An Introduction to Object-
Oriented Programming (3rd Ed.), Addison-
Wesley.

[11]. Handorean, R. and Roman, G. C., (2002).
“Service Provision in Ad Hoc Networks”, Proc. of
the 5th International Conference on Coordination
Models and Languages, York, UK, April 8-11,
pp. 207-219.

[12]. Jeng, J.J., (2001). “An Approach to Designing
Reusable Service Framework via Virtual Service
Machine”, SSR’01, May, Toronto, Ontario,
Canada, pp. 58-66.

[13]. Krueger, C. W., (1992). “Software Reuse”, ACM
Computing Survey, vol. 24, no. 2, June, pp.
131-183.

[14]. Ran, S, (2003). “A Model for Web Services
Discovery with QoS” SIGecom Exch. 4(1), 1–10

[15]. Richard, G.G., (2000). “Service Advertisement
and Discovery: Enabling Universal Device
Cooperation”, IEEE Internet Computing, vol. 4,
no. 5, Sep/Oct, pp. 18-26.

[16]. TheDAML-S Coalition.:DAML-S, (2002). “Web
Service Description for the semantic Web”
Horrocks, I., Hendler, J.A., (eds.) The Semantic
Web - ISWC2002, First International Semantic
Web Conference. Lecture Notes in Computer
Science.

[17]. Van den Heuvel,W.J., (2007). “Integrating
Modern Business Applications with Legacy
Systems: A Software Component Perspective”.
MIT Press, Cambridge.

[18]. Wang, Y., Stroulia, E, (2003). “Semantic
structure matching for assessing Web-service
similarity”Proceedings of First International
Conference on Service Oriented Computing
(ICSOC03), pp. 194–207. Springer, Berlin.

