
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

12
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

Android Forensics and It‟s Existing Vulnerabilities Penetration Testing

Framework

Praful Meshram

Research Scholar

SGGS Institute of Engineering & Technology, Nanded

praful.meshram@gmail.com

Chetan Janbandhu

Automation Platform Developer

Bell Labs, New Jersey, United States of America

chetan.janbandhu@nokia.com

Abstract – Smartphones are also portable computers as they provide many services needed in our day to day lives such as texts, calls, camera,

Bluetooth, GPS and various other applications. Due to the attractive features of android smartphones, it‟s use is increasing tremendously. With

the growing popularity of Android and it being one of the best players in mobile industry, knowing the best practices for its security becomes

very crucial. Android is known as a platform that lends itself to hacking. Smartphones are prone to data leakage as they can easily exchange data

over the Internet. Applications are made of four components namely Activity, Service, Broadcast receivers, and Content provider. This paper

proposes the various threats and security risks Activity, Broadcast Receivers and Content Providers pose and how they can be responsible for

sensitive data leakage without the user‟s knowledge. It also states the various attacks and the prevention mechanism and focuses on the

prevention mechanism known as YASSE. This paper also states various other methods and technologies that are implemented for cloud based

security that not only enhances the safety of the devices, but also reduces the system load of the devices.

Keywords - Android, attacks, security, malware, frameworks.

__*****___

I. INTRODUCTION

Android is a widely popular and open source operating

system designed for smartphones and other mobile devices. While

Android is based on Linux, it defines an entirely new middle-ware

and GUI environment in which applications execute. Applications

are mostly written in Java, which is compiled to Dalvik bytecode,

which runs in a virtual machine similar to the Java virtual machine.

Apart from Java, Android also allows parts of apps to be coded in

native code.
Inter-Process Communication (IPC): In Android,

system services are provided in separated processes, with a
convenient IPC mechanism (Binder) to facilitate the
communication among system services and applications. Binder
IPC is heavily used in Android and recommended in the design of
applications.

Android employs a quite efficient and convenient IPC

mechanism, Binder, which is extensively used for interaction

between applications as well as for application-OS interfaces.

Binder is implemented as a kernel driver and user-level applications

could just interact with it through standard system calls, e.g.,

open(), ioctl(). Binder is the key infrastructure of Android system

and aggressively used to connect various parts of the system

together. To facilitate resource accessing from isolated applications

and data sharing among applications and the system, Android

designs

a permission-based security mechanism. Each application needs

permissions to access system resources. These permissions are

granted from users at install time. At runtime, each application is

checked by Android before accessing sensitive resources. Any

access to resources without granted permissions will be denied. The

permission mechanism in Android is fine-grained which is different

from iOS. In Android 4.2, there are 130 items of sensitive resources

that are protected with permissions.

Fig. 1 Android Architecture

The rapid growth of smart phones has lead to a renaissance for

mobile services. Smart mobile devices include smart phones, PDAs,

tablet PCs and so on. People use them to store personal information,

send and receive emails, browse the web,process documents and

entertain. According to the Gartner research results, the android

system accounts for more than 50% of the global smart mobile

devices operating systems. The openness of android and its large

market share make android the most vulnerable system. Android

phones store a lot of private information of users in its database.

Android uses permissions to protect sensitive resources from

untrusted apps. However at the time of installation, the user grants

permission to these apps to access various contents. After

permission is granted at install time, the apps could use these

permissions without any further restrictions. These apps keep and

manage sensitive data such as address book, photos, etc.

Smartphones are prone to data leakage as they can easily exchange

data over the Internet. Android relies on the Sandbox to protect data

of one app from another app while it leaks sensitive data due to

Content Provides and Broadcast Receivers.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

13
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

A. Overview
Applications are made of four components namely

Activity,Service, Broadcast receivers, and Content provider. The
Activity defines the GUI and its interaction with the user. The
Service runs in the background performing long run applications.
The Broadcast receiver responds to specific system-wide messages
and the Content Provider is responsible for sharing or managing the
data between applications.

(1) Activity:

An Activity defines a graphical user interface and its interactions

with the user's actions. A malicious app has the ability to create a

complete virtual environment that acts as a full Android

interface,with complete control of all user interactions and inputs.

This makes it very hard for the victim to escape the grip of the

attacker. These attacks are often called the GUI attacks.

There are various attack vectors that a malicious app can use to

mount GUI confusion attacks. Other enhancing techniques have

also been identified that do not present a GUI security risk in

themselves,but can assist in making attacks more stealthier.

However, before discussing about the various attacks, the typical

android user interface appearance needs to be identified.

Fig. 2 Overview of Screen

Status Bar-shows the information about the device's state such as

current network connectivity status or the battery level.

Navigation Bar-allows users to navigate among current apps as

well as within the focused app. The Back button removes top

Activity from the top of the stack. The Home button lets the user

return to the base screen. The Recent button shows the list of top

Activities of the running apps,so the user can switch among them.

Apps can draw graphical elements with the following

components - Views, Activities, Windows.

· Views - A View is the basic UI building block in

Android. Buttons, text-fields, images,and OpenGL

view ports are all examples of views.
· Activities - An Activity can be described as a controller

in a Model-View-Controller pattern. An Activity is

usually associated with a View(for the graphical

layout)and defines actions that happen when the View

elements are activated(e.g.,a button gets clicked).

Activities are organized in a global stack that is

managed by the Activity Manager system Service. The

Activity on top of the stack is shown to the user.

· Windows - A Window is a lower-level concept:a virtual

surface where graphical content is drawn as defined by the

contained Views. Windows are normally managed

automatically by the WindowManager system Service,

although apps can also explicitly createWindows.

(1.1) GUI Confusion Attacks-

· Draw on top : Attacks in this category aim to draw

graphical elements over other apps. Typically,this is done

by adding graphical elements in a Window placed over

the top Activity. The Activity itself is not replaced, but

malware can cover it either completely or partially and

change the interpretation the user will give to certain

elements. Apps can explicitly open new Windows and

draw content in them using the addView API exposed by

the WindowManager Service.

· App switch : Attacks that belong to this category aim to

steal focus from the top app. This is achieved when the

malicious app seizes the top Activity:that is,the malicious

app replaces the legitimate topActivity with one of its

own.

(1.2) Enhancing techniques-

Techniques to detect how the user is currently interacting with the

system: To use the described attack vectors more effectively,it is

useful for an attacker to know how the user is currently interacting

with the device.

Reading the system log-Android implements a system log where

standard apps,as well as system Services,write logging and

debugging information. This log is readable by any app having the

relatively-common READ LOGS permission. By reading

messages written by the ActivityManager Service,an app can learn

about the last Activity that has been drawn on the screen.

Moreover, apps can write arbitrary messages into the system log and

this is a common channel used by developers to receive debug

information. We have observed that this message logging is very

commonly left enabled even when apps are released to the public,

and this may help attackers time their actions,better reproduce the

status of an app, or even directly gather sensitive information if

debug messages contain confidential data items.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

14
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

(2) Service:

Services run in the background and do not interact with the user.

Downloading a file or decompressing an archive are examples of

operations that may take place in a Service. Other components can

bind to a Service, which lets the binder invoke methods that

aredeclared in the target Service‟s interface. Intents are used to start

and bind to Services. Services run with a higher priority than

inactive or invisible activities and therefore it is less likely that the

Android system terminates them for resource management. The

only reason Android will stop a Service prematurely is to provide

additional resources for a foreground component usually an

Activity. When this happens, your Service can be configured to

restart automatically.

(3) Broadcast Receiver:
The Broadcast receivers are used as a mean of communication

between app‟s components, between different apps, and between

the OS and apps. This Android component enables applications to

register for system or application events or actions (e.g. receive

call, receive message).Once an event occurs, Android runtime

notifies all applications that have a registered receivers of that

particular action. A broadcast is a message that any application can

register to receive. The Android system delivers numerous

broadcasts for system events, such as when an Internet connection

is enabled or a new SMS arrives. While Broadcast receivers are

considered a useful feature by developers, users‟ experience and

privacy might be affected negatively by them. They provide

hackers with the ability to orchestrate their attacks and link them

with the events that are happening on the mobile device.

With the use of Broadcast receivers the location privacy of users

can be compromised, moreover,the usage of Broadcast receivers

by malicious applications is remarkably higher than benign

applications.

(4) Content Providers:

Android relies on the Sandbox to protect data of one app from

another app while it offers the ContentProviders to share databases.

A ContentProvider manages access to a central repository of data. It

can be used to manage access to a variety of data storage sources. It

is the best way to share data among applications.Content Providers

are databases addressable by their application-defined URIs.

ContentProviders are based on the client- server model. Server apps

assign URIs to identify their databases externally. Client apps are

supposed to know the names, table structures and URI of the

database to use. Client apps use ContentResolvers to communicate

with server side ContentProvider. The Content Resolver accepts

requests from clients, and resolves these requests by directing them

to the content provider with a distinct authority. To do this, the

Content Resolver stores a mapping from authorities to Content

Providers. Then the ContentProvider receive query results from

database via DBHelper and send them back to ContentResolvers.In

other words, ContentProvider and ContentResolvers serve as

windows for sharing databases between server and client apps.

Fig 3:Database sharing between applications.

To use major system resources or functions, Android apps should

make requests for permissions of Android system via

AndroidManifest.xml. For instance, to capture images from the

camera on a Smartphone, an app should get the android.permission-

group.CAMERA permission from the Android system. Likewise, to

use the Internet,an app should get the

android.permission.INTERNET permission from the Android

system. Android defines and offers over 200 permissions and

enables developers to define and use their own permissions. Server

apps can use permissions to restrict accesses to their databases. In

general, server apps define in AndroidManifest.xml their specific

permissions for reading and writing to share their databases. Client

apps describe in AndroidManifest.xml the permissions assigned to

databases they intend to use and make requests of the system. Once

client apps run and ContentResolvers send queries to

ContentProvider, Android system checks out if client apps own

permissions required to access such databases. Unless client apps

own permissions required to access those databases, the service is

denied.

B. Intents

An Intent is a messaging object you can use to request an

action from another app component.
There are two types of intents:

· Explicit intents specify the component to start by name

(the fully-qualified class name). You'll typically use an

explicit intent to start a component in your own app,

because you know the class name of the activity or

service you want to start. For example, you can start a

new activity in response to a user action or start a service

to download a file in the background.
· Implicit intents do not name a specific component, but

instead declare a general action to perform, which allows a

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

15
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

component from another app to handle it. For example, if you want

to show the user a location on a map, you can use an implicit intent

to request that another capable app show a specified location on a

map.

Figure shows how an intent is delivered to start an activity.

Fig 4:Intents

In Fig4. How an implicit intent is delivered through the system to

start another activity: [1] Activity A creates an

Intent with an action description and passes it to startActivity(). [2]

The Android System searches all apps for an intent filter that

matches the intent. When a match is found, [3] the system starts the

matching activity (Activity B) by invoking its onCreate() method

and passing it the Intent.

II. ANDROID SECURITY MODEL

Android is a widely popular and open source

operating system designed for smartphones and other mobile

devices. While Android is based on Linux, it defines an entirely new

middle-ware and GUI environment in which applications execute.

Applications are mostly written in Java, which is compiled to

Dalvik bytecode, which runs in a virtual machine similar to the Java

virtual machine. Apart from Java, Android also allows parts of apps

to be coded in native code.
Inter -Process Communication (IPC): In Android, system

services are provided in separated processes, with a convenient IPC

mechanism (Binder) to facilitate the communication among system

services and applications. Binder IPC is heavily used in Android

and recommended in the design of applications.

III. ANDROID ATTACKS AND MALWARE

A. Attacks

Android is open source software stack based on Linux kernel

for its services. The source code is available for each of the android

functionality. So attackers can find flaws in the operating system to

attack the device. There are various techniques that can be used to

attack the android smart phone. There are three methods which are

used mostly that are Drive by download, Update attack and

application repackaging. Most of the applications on the android

market (both official and other) are repackaged. In repackaging the

attacker have to download the application from android market,

perform reverse engineering ,insert the malicious code into the

application and upload it to market. The Users who download this

kind of repackaged application compromise their privacy and can

lose the private data or the confidential information. Whereas in

Update attack the application seems legitimate at the time of

installation. After the installation application asks for update. As the

user updates the application the malicious payload get downloaded

in the application on the device. The Drive by download method

works differently such as user is playing the game and he got the

ads posing that to unlock some attractive features of game click

here. As user click theadvertise the malware get downloaded on the

device. Attacker can leverage user to malicious sites by posting

links within SMS or Email.
In this section we will describe the reverse engineering, the
insertion of malicious code into Android banking Application and
DDOS attack.

(1) Reverse Engineering
Reverse engineering is the acquisition of a deep understanding

of processes of a system or application by having only the finished

product. Being able to understand the functioning of an application

you do not have the source code is the base Reverse Engineering.

Reverse engineering
that we will perform in this paper concerns the android banking

applications. So we must first of all have the APK (Android

Application Package) of application. This can be retrieved from a

device or from the Play Store. The apk file is a file that contains all

the files needed to run an android application such as :

Dalvik executable (.dex) file : is the executable file that results
from the compilation of java source code Manifest file : is a file
that contains the setup required by android applications Resources
file: is a file that contains the resource

required to run the application as images. The reverse

engineering allows us to have access to all the files of applications

that serves us in our attack. After downloading android target

applications, we will proceed to the reverse engineering. The

purpose of reverse engineering is to convert downloaded files.apk

into files.java to access the source code. First we used the tool

Apktool to performe reverse engineering on .apk file, so we got the

byte code of the application file.class. Then we used the JD-UI tool

to visualize and convert file.class to file.java. This procedure

allowed us to obtain the source code of the banking.

Insert malicious code into Android banking app The second

phase of the attack is to infect the source code, and add malicious

activity. In order to deploy the infected applications, it is necessary

to sign them to deceive mobile end-users. For this we used keytool

to generate the private key and jarsigner to sign the modified

application. After finishing the changes on the source code, we

converted those infected files to .apk files and deployed them. In a

concern for ethics and in order to not infect the existing network we

deployed these applications on a controlled local network in our

laboratory. After having downloaded the applications, end users will

be automatically infected. So we can perform several types of

attacks based on the type of malicious code inserted. In our case we

insert malicious activity that can overload the network and launch a

DDOS attack on remote servers including banking servers, which

can cause serious damage to the target bank and all its customers.

(2) DDos Attack
A DDOS attack is a DOS form attack that is not performed by

a single node but achieved by the combination of multiple nodes.

All nodes simultaneously attack the victim node or target network

by sending them huge amount of packets, this will totally consume

the bandwidth of the victim and this will not allow the victim to

receive legitimate traffic. So our DDOS attack is performed as

follow; After installing our forged application on the device, our

malicious activity establishes a connection with the server

controlled by the attacker by sending an echo request and the server

responds with an echo reply. Then we launch TCP flood attack. A

flood attack involves the zombies sending large volumes of traffic

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

16
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

to a banking server. We generate several TCP SYN flood attack

with a maximum connection rate of 500kbps on the server of the

bank in order to saturate the bandwidth of the bank server.

B. Proposed solution
In this section we propose some solutions to protect mobile

applications and banking server against such types of attacks

(1) Securing banking application
As we have seen in previous sections, compiled Android

applications could be decompiled to obtain the source code of the

application. So to make the understanding and deep analysis of the

code more difficult, the obfuscation techniques could be used. There

are several tools that help obfuscate the source code of an

application. The default tool proposed by android is proguard tool

that shrinks, optimizes, and obfuscates your code by removing

unused code and renaming classes, fields, and methods with

semantically obscure names. The result is a smaller sized .apk file

that is more difficult to find by reverse engineering. The paid

version of this tool is DexGuard which provides advanced security

features tailor-made for the Android operating system. It offers

protection against static analysis. DexGuard shields your apps from

cloning, tampering, key extraction and piracy, by applying multiple

techniques such as string encryption, class encryption, asset

encryption, call hiding, code obfuscation and resource obfuscation

(2) Securing banking server

Secure banking server against DDOS attack: To secure

banking applications servers against these type of attacks we

propose the installation of an intrusion detection system (IDS) this

will help to detect and mitigate the illicit network activities. This

detection system often keeps files
of system activity statistics, user connections, disk activity, etc.

In addition, alarms are triggered when abnormal activity occurs.

Most intrusion detection systems also try to match network traffic

with fingerprints of known attacks. Moreover, some "alarm" are

triggered when a potential attack
is detected, then the system records the event, notifies the

system administrator via email or pager. It is important to know that

an intrusion detection system can operate in either a final machine

or a dedicated machine on the network.

1) solution Authentication: Authentication aims to verify the
identity of an entity so as to allow this entity to resources (system,
network or server). So, we propose strong authentication for
mobile applications on banks of servers in order to identify the
credibility of two different entities.

This mechanism will ensure the traceability, integrity,

confidentiality and authorization in which we guarantee the security

of both sides (client / server). In order to secure applications against

such attacks it is necessary to proceed on several axes. First we must

protect the source code against reverse engineering and secondly we

must protect appli-cations from cloning, tampering, key extraction

and piracy. We used in our tests the DexGuard tool to realize

obfuscation and so making difficult understanding and analyzing the

code. We must also think about securing the network against this

type of infection. For that we must establish strong authentication

mechanisms between the server and end users, encrypt

communications and deploy IDS and firewalls throughout the

network.

C. Malware
Software that “deliberately fulfills the harmful intent of

an attacker” is referred to as malicious software or malware. These

are intended to gain access to device systems and network

resources, disturb device operations, and gather personal

information without taking the consent of the user, thus creating a

menace to the availability of the Internet, integrity of its hosts, and

the privacy of its users. Malwares come in wide range of variations

like Virus, Worm, Trojan-horse, Rootkit, Backdoor, Botnet,

Spyware, Adware etc. These classes of malwares are not mutually

exclusive meaning thereby that a particular malware may reveal the

characteristics of multiple classes at the same time.

Attackers exploit vulnerabilities in web services, browsers and

operating systems, or use social engineering techniques to make

users run the malicious code in order to spread malwares. Malware

authors use obfuscation techniques like dead code insertion, register

reassignment, subroutine reordering, instruction substitution, code

transposition, and code integration to evade detection by traditional

defenses like firewalls, Antivirus and gateways which typically use

signature based techniques and are unable to detect the previously

unseen malicious executables. To overcome the limitation of

signature based methods, malware analysis techniques are being

followed, which can be either static or dynamic. The malicious

program and its capabilities can be observed either by examining its

code or by executing it in a safe environment.

Android is a widely popular and open source operating system

designed for smartphones and other mobile devices. While Android

is based on Linux, it defines an entirely new middle-ware and GUI

environment in which applications execute. Applications are mostly

written in Java, which is compiled to Dalvik bytecode, which runs

in a virtual machine similar to the Java virtual machine. Apart from

Java, Android also allows parts of apps to be coded in native code.

(1) Static Analysis:

Analyzing malicious software without executing it is called

static analysis. The detection patterns used in static analysis include

string signature, byte-sequence n-grams, syntactic library call,

control flow graph and opcode (operational code) frequency

distribution etc. William Enck proposed a static analysis method to

analyze the permissions of an Android application. They first

analyze the permissions granted to the application when it is

running. Then they compare them with the permissions declared in

the AndroidManifest.xml. If they are different, the application

maybe hides dangerous permissions. So the installation is

prohibited. But this method can only analyze if there are hidden

permissions in an application. If there are no hidden permissions,

the user determines whether to continue installing the application all

by himself. Even though an application declares a number of

extremely dangerous permissions (e.g. CALL_PHONE,

SEND_SMS), if the application does not hide these permissions, the

detection method does not prohibit the installation of the

application. While the vast majority of Android users don't know

that these permissions may cause serious consequences and

continue installing these malicious applications.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

17
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

Fig. 5 Static Analysis Proposed By William Enck

(2) Dynamic Analysis:

Analyzing the behavior of a malicious code (interaction with

the system) while it is being executed in a controlled environment

(virtual machine, simulator, emulator, sandbox etc.) is called

dynamic analysis.
Thomas Blasing proposed a method to detect malicious

behavior by using emulator. They use a monkey which can generate

pseudo-random streams of user events such as clicks, touches, or

gestures, as well as a number of system-level events. Then they

place a sandbox in kernel space to log the behavior of the

application at the system level. They analyze the resulting log file to

determine if the application is malicious. The method is for security

vendors to detect malicious behavior of new applications. But it is

not adapted to ordinary mobile devices.

IV. PROPOSED FRAMEWORKS

A. YAASE

Android Security model mostly relies on application

sandboxing , but there have been believable reports that this

makes it vulnerable to privilege spreading attacks. Privilege

spreading attack: An attack of this type , an application that is under

privileges exploits the permissions or privileges of a privileged

application. If a malicious application is leveraging the vulnerability

of a legit application it is often referred to as confused deputy

attack.
Yet Another Security Extension is a fine grained security

framework which is transparent to applications where policies

define how resources of the phone will be accessed. Yaase uses

user-defined label for data to utmost use and enforces the right

distribution of tagged data for 2 types of communication -
· Application-to-application

· Application-to-internet
In this framework another a major role is played by a system -

Taintdroid , leveraging on its tainting capability and extending it to

support user defined labels and for performing modifications due to

enforcement of policies on the tagged data.

Yaase policies define the data labels that an application is

authorized to have access to by the user. It means , that if an

application tries to access a data tagged with label for which that

application has no authorization , the application will not be granted

access to it.

(1) Architecture of YAASE:

In order to make a security framework so fine grained and

transparent to applications some modifications were made in the

android components as stated by the authors of YAASE. The

modified android components are marked in gray while blue

marked are components introduced by YAASE.

To track the data stored on the phone that is accessed by the

applications and to see how this data is disseminated both within the

phone (i.e., from one application to another)and when the data

leaves the device (i.e., an application sends the data over the

Internet).The capabilities of TaintDroid have been extended to be

able to tag sensitive information with a taint value that is defined in

our system component - Labeling store. Every Taint is 32 bit value

and is supposed to define following - Control group , Taint Label ,

and some extra information for history inspection. The control

group is supposed to specify the whether the data in question is

coming from a system source like GPS.
Once the data is tainted , it has to disseminate according to the

users requirements . User requirements are set by the policy

provider that sets policies per application. To be able to successfully

enforce the policies defined by the Policy provider and take

appropriate action on the data , system has hooks called Policy

Enforcement Point in the lib binder module this helps in controlling

access to simple resources like IMEI ,location data etc.

In the LibBinder, we intercept the standard cursor from where we

extract the CursorWindow. The CursorWindow provides methods

that can be used for modifying the data contained in the cursor.

Using the CursorWindow allows us to filter out from the cursor

data only part of the information.

In this way, our enforcement mechanism achieves a fine-

grained filter capability. The actions that can be invoked by the

policies are defined in the Action Library. Another PEP is placed in

the Java Framework Library (JFL) of the Dalvik Virtual Machine

for capturing operations on the file system (such as reading and

writing on the local storage as well as accessing the phone camera

and microphone) and on the network stack for controlling network

traffic even if sent over an encrypted socket (SSL). We have

modified the socket.open(address) method to inspect the address to

where the data is sent. In this way, we can restrict the use of only

authorized addresses or substitute the address specified by the

application with an address defined by the user. By modifying the

sendStream() we are able to intercept the data before it is sent and

perform some actions, such as filtering or substitutions.

Fig. 6 The YAASE architecture

The role of PEP and PDP goes hand in hand. When an

applications needs an access to any of the resources , the PEP

checks the request , collects information about the application UID ,

the resource being requested and type of operation requester wants

to do and the tag (if available) with the data. On collecting this

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

18
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

information PEP forwards it to the PDP - Policy decision point.

PDP is responsible for making decisions about whether to allow the

request or to perform some action on the data before returning it.

PDP uses information collected by the PEP to get the exact policies

associated to this application from the policy provider. On

evaluating policies retrieved from the policy provider the further

decision by PDP is made.

(2) Policy Generation:

A brief discussion on policy language will make it clear how a

policy is made for controlling data dissemination. Policies are

identified by a name and define what operations a requester

application can do on a resource. In YAASE a resource can be

either a content and service providers in the phone or other

applications that expose services for other applications to be

invoked. A policy has a have to perform that specifies action that

have to be performed if it is enforced. There are some libraries

present that are equipped to perform several actions on the data and

changing the values of parameters of operation being executed.

handle clause defines an expression on labels associated with data

passing from requester to resource if operation is a setter method

which does not return any data. There is also a getter method that

provides data from resources to requester . handle clause refers to

different labels to be handled.

With examples it will be clearer-

Fig. 7 The syntax for policy language

Fig. 8 Policies applied for orgContacts

Fig. 8.1 Policies applied for org Contacts

Fig. 8.2 Policies applied for orgContacts

Fig. 8.3 Policies applied for orgContacts

Let us consider an Organizer application (OrgContacts) providing a

smart way of organising the user‟s contacts and a back-up capability

that stores the user‟s contacts over a cloud service. For its

functionalities, the OrgContacts requires access rights to the phone

contact provider and to the internet service. In this scenario, the user

wants that only her work contacts are accessible to the OrgContacts.

Moreover, the user wants to make sure that the OrgContacts sends

the contacts to a specific location over the internet. The user‟s

requirements can be expressed by two policies as in Figure 3.

In particular, the policy AppPolicy1 specifies that the OrgContacts

can perform the getContacts operation on the contact provider. We

assume the user has tagged each contact entry with a label to

indicate whether it is a working contact (associated with label

„„Public'‟) or a private contact (associated with label „„Private‟‟).1

The contacts are returned to the OrgContacts through a cursor

containing all the entries. This means that the cursor will be tagged

with labels “Public” for the working entries, “Private” for the

private entries, and “Contact” to indicate it contains data coming

from the contact provider. To remove from the contacts private

entries, the policy invokes the filterOut action on the returned

cursor (indicated as returnData)removing all the entries tagged with

label „„Private‟‟. After the execution of the filterOut action, the new

cursor is now tagged with only “Public” and “Contacts” labels. At

this point, the condition specified by the handle on line 3 is satisfied

and the data can be returned to the OrgContacts.

If the have to perform clause had not been specified, then the

cursor would have been tagged also with label “Private”. Because

the expression of the handle clause defines which are the only

labels permitted then the policy would have denied the returning of

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

19
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

the data to the OrgContacts. The policy AppPolicy2 authorises the

OrgContacts to access the internet. However, it enforces that the

OrgContacts can connect only to a specific url that can be decided

by the user. This is achieved by defined the value aCloudUrl and

specifying the sendOnlyTo action in the have to perform clause.

To make sure the data that is sent are only public contact entries, the

handle clause is specified for handling only data tagged with

„„Public‟‟ and „„Contacts‟‟ labels. With this policy, we can prevent

the application to send the user‟s contact to other online services.

Moreover, if the application would get access to other type of data

(for example call history) tagged with other labels then this policy

would not allow the sending of this data over the internet.

One of the main security issues of the Android platform is the

spreading of access permissions. Applications can implement

services. These services can be invoked by other applications. In

this way, the application implementing the service can allow other

applications to use its permission to access phone resources

An application A requests permissionto access the internet. The

application A could pose as a simple application to provide news

feeds and it would not look suspicious to the user. An application B

that acts as a navigation application requires permission to access

the GPS to display the user‟s current position. Moreover,

application B implements a service that allows other applications to

access the GPS through application B permission. code that

invokes the service of application B to get access to

theGPSwithouttheuserknowingaboutthis.Thus,application A

without asking the user for the GPS permission would be still able

to get that information and it could be able to leak the user‟s

location over the internet.

We do not expect that the average Android user is able to create

policies when installing applications. For this reason, we have

extended the Android installer with the User Setting Interface

(USI) component (see Figure 1). When a new application is

installed, the installer presents to the user the set of permissions

that the application requires. These permissions are extracted from

the application manifest file. The USI intercepts the permissions

requested by an application and generates policies and labels

according to type of permissions that the application is requesting.

For instance, when the OrgContacts is installed it requires access to

the phone contacts (READ_CONTACTS) and internet

(INTERNET). The first requirement will trigger the USI to

generate a basic policy for OrgContacts to access the contacts and

the internet as in Figure3.he USI checks in the Labelling Store for

possible extra labels associated with the data type requested from

the application. For contacts two extra labels are specified for

public and private entries. The USI will prompt the user for

allowing the OrgContacts to access these two subtypes. The user

selects only the “Public” label to be associated with the

OrgContacts. Then the USI will modify the handle clause adding

the „„Public‟‟ label, and generate the have to perform clause for

filtering out the contacts tagged with the “Private” label. Moreover,

the USI will inform the user that OrgContacts send the contacts

over the internet and whether the user is willing to grant this type

of permission to the application.

The user will agree to propagate the data that OrgContacts has

access to to the internet.

The result of this is shown in Figure4, the user decides that

OrgContacts has to access to only specific cloud sevice and

selects it for USI . This will allow OrgCOntacts to generate have

to perform clause in AppPolicy2 as shown in fig 5

Similarly to the case of the READ_CONTACTS permission, the

USI checks whether the user associates data with extra labels for

READ_CALENDAR, READ_LOGS, READ_SMS, and

GET_ACCOUNTS permission requests. For permissions that

enable applications to generate data traffic, such as

INTERNET, SEND_SMS, CALL_PHONE and

BLUETOOTH_ADMIN, the USI enables the user to set specific

destinations or to black list addresses and phone numbers.

Moreover, when these permissions are combined with permission

for access data then the USI always prompts the user for explicit

consent to allow the application to combine the permissions. The

user can change at runtime the permissions granted to an

application by disabling the respective policy. YAASE enforcement

mechanism overwrites the check permission of the standard

Android. YAASE enforces a negative- by-default policy meaning

that if there is no policy associated with an application request then

the request is not granted.

B. Cloud based malware detection
Most of the device malicious behavior detection methods need to

operate on the device, however, the device is a resources-

constrained platform. Its CPU, memory and power decide that it

cannot run complex detections. Its CPU, memory and power decide

that it cannot run complex detections.

Before introducing the system, we need to clear security problems

faced by the mobile devices, including the following aspects:

· Malicious applications
The malicious applications are not only found in
some third-party application market, also found in the

Google Android Market. Very serious problems are

caused by these malicious applications. Some

applications can reveal the user's location, contacts and

other personal information

· Unsafe websites
Some sites may contain large number of malicious

applications. Android phone who using web browser

to surf the Internet may be exploited if he/she visits a

malicious page.

· Data security of mobile devices
Smart mobile devices are different from PC because of

their portability, and thus they are in a higher risk of

loss. When a user lost his/her device, the data on the

devices is difficult to recover. Some other reasons such

as misuse of users, damage of devices may also cause

the loss of data.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

20
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

· Network data security of the mobile devices
When a user connects to an access point setup by the

attacker, the traffic of his/her mobile device may be

sniffed.

A Cloud based detection system introduced below acts as a good

solution to the security issues faced by the android devices.

(1) System architecture :

The system shows that the use of cloud can detect malware on the

Android device without the actual intensive-logics running on the

device. The architecture of this system is shown in Figure.
An agent application running on the device, which has three basic

functionalities; User interface, Operating logic layer and

Connection Management. The device firstly sets up a persistent

connection with the cloud server. Through the connection, the

device uploads suspicious files to the cloud management server and

receive results from the cloud server. In the meanwhile, the device

connects to the VPN server in the cloud which can route the traffic

of devices to the cloud and to ensure the safety of users‟ network

data. A transparent proxy is deployed in the cloud to detect the

traffic from application layer.

Fig. 9 Architecture of Cloud based security model

(1.1) Agent application on the Device :

(a) User Interface
After entering the user interface, users can select the appropriate

action, such as logging, data backup, data synchronization,

malicious applications scanning and so on.Then user interface sends

commands to the operation logic layer. The logic layer executes the

commands and returns the state to the user interface. Then the user

interface is updated with the state.

(b) Operation Logic
The operation logic layer contains five components: user

validation, application management, device management,

information management and data management.

· User Validation - used to initiate a connection to the

server and verify the user information.
· Application management - scans the SD card and path

/data/app for all the .apk files, extracts the signature of

these files and sends them to the cloud. If a malicious

application is detected, the cloud will alert the user.
· Device management - users can remotely lock screen,

locate the device and back up data through the server

when the device is lost.

· Data management - extracts the user's contacts, text

messages and other important data, uploads to the server

for backup, and restores them when the user needs.
· Message management - responsible for receiving the

messages pushed from server with the persistent

connection and then notifies the appropriate module for

processing.
(c) Connection Management

Mobile devices will connect the cloud server with two connections,

one is VPN connection, and the other is persistent connection. The

VPN connection can safeguard network data. Due to the VPN

connection all the network data of mobile devices will flow through

the cloud, so that the server in the cloud can analyze user's network

data and protect the devices against threats on Internet.

The cloud cannot send messages to the device directly, as most of

the time a mobile device will be allocated a private address and

access the Internet through NAT. In order to notify the user

immediately about the detected threat the server needs to push the

information to the devices. The agent opens a persistent connection

to the server for all the information. Every time the server sends a

new message to the agent, neither side would close the connection.

(1.2) Cloud Server :

The cloud consists of three servers, namely, VPN server, proxy

server and management server. Transparent proxy is made up of

VPN Server and proxy server.

· The device first connects to the VPN server. After that,

all the network data of the device must go through VPN

server. VPN server redirects the traffic to proxy server

through netfilter or any other technology.
· Proxy server instead of device requests to the Internet,

and detects the content responded from the Internet on

application layer. If no threat is detected, proxy returns

the content to the client.

· The management server maintains the persistent

connections with devices as well as controls the

filtering rules of proxy. When threats are detected, the

management server notifies users through

persistent connections immediately.
In Management components, proxy management sends

configuration to the proxy and handles messages sent back from

proxy through the Socket. Device management is responsible for

notifying devices through persistent connections, receiving data

uploaded from devices and processing the data. Log management

manages the local log files.

The management server interacts with proxy through socket. The

management server sends filtering rules to the proxy. And the proxy

sends the suspicious files and applications intercepted to the

management server for detecting. The management server interacts

with agents on devices through persistent connections. Through

persistent connections, the management server can push messages

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

21
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

to devices when threats are detected or the server needs the user to

confirm something and device scan send the validation information,

apk files, backup data, etc. to server. Presentation layer is provided

to administrators. They can check and configure the management

server through presentation layer.

(1.3) Measures for safeguard :

In the cloud we implement the following measures to

safeguard the safety of devices:
· VPN connections between devices and the cloud

ensure the safety of users' network data.

· Deploy a firewall between the Internet and the proxy

server.
· Deploy an intrusion detection system on the proxy.

· When a user downloads an application installation

package (e.g. .apk file), transparent proxy intercepts the

file and sends it to the management server for detecting.
· Management server runs a variety of malicious

application detection programs.
· The users can backup their important data on the

management server of cloud.

V. CONCLUSION

This paper gives a brief overview of the Android framework and its

components namely Activity, Content Provider, Broadcast

Receivers and Service. It discusses the possibility of various attacks

and risks that can be caused due to these components. We also

discuss about the Android malware attacks and their solutions using

static and dynamic analysis while giving a secure banking

application example. A crucial proposed framework defending

these attacks that we emphasize on, is that of YAASE. We also

confer upon cloud based malware detection techniques and how

they can prevent the user and applications from malicious attacks

and how they can help in reducing the load on systems.

REFERENCES

[1] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,

and MarcelWinandy. Privilege escalation attacks on android.

In Proceedings of the13th international conference on

Information security, ISC‟10, pages 346–360, Berlin,

Heidelberg, 2011. Springer-Verlag.

[2] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu,

and DanS.Wallach. Quire: Lightweight provenance for smart

phone operatingsystems. In 20th USENIX Security

Symposium, 2011.

[3] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P.

Cox,Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.

TaintDroid:an information-flow tracking system for realtime

privacy monitoringon smartphones. In Proceedings of OSDI

2010, October 2010.

[4] William Enck, Machigar Ongtang, and Patrick McDaniel.On

lightweight mobile phone application certification. In Proc.

CCS‟09, pages 235–245, 2009

[5] IDC Worldwide Mobile Phone Tracker,

http://www.idckorea.com/, 2014

[6] Seung-Hyun Seo, Dong Guen Lee, Kangbin Yim, “Analysis

on Maliciousness for mobile application”, IMIS 2012, pp.

126-129, 2012.7.

[7] ZDNet Korea, http://www.zdnet.co.kr/news/news_view.asp?

Artice_id= 20120517094852&type=xml, 2012.5.

[8] Taenam Cho and Nammee Moon, "Smartphone Application

Development and Code-sig- ning," KIISC, vol.21 no.1,

pp.19-25, 2011.

[9] AndroidManifest,

http://developer.android.com/guide/topics/ manifest/

manifestt-intro.html

[10] Android Security, http://developer.android.com/training /

articles/security-tips.html

[11] ContentProvider,

http://developer.android.com/intl/ko/reference/android

/content/ContentProvider.html.

[12] Android Permission,

https://android.googlesource.com/platform/frameworks

/base/+/master/core/res/AndroidManifest.xml

[13] Dalvik,

http://ko.wikipedia.org/wiki/%EB%8B%AC%EB%B9%85_

(%EC%86%8C%ED%94%84%ED%8A%B8%EC%9B%A

8%EC%96%B4.

[14] Smali, http://code.google.com/p/smali/.

[15] Android Proguard, http://developer.android.com/tools

/help/proguard.html.

[16] Android API Guide - Permission,

http://developer.android.com

guide/topics/manifest/permissionelement.html.

[17] Laurence Goasduff. Gartner Says Worldwide Smartphone

Sales Soared in Fourth Quarter of 2011 With 47 Percent

Growth. http://www.gartner.com/it /page.jsp?id=1924314.

[18] W. Enck, M. Ongtang, and P. McDaniel. Mitigating Android

Software Misuse Before It Happens. Technical Report NAS-

TR-0094-2008, Network and Security Research Center,

Department of Computer Science and Engineering,

Pennsylvania State University, University Park, PA, USA,

November 2008.

[19] Thomas Blasing, Aubrey-Derrick Schmidt, Leonid Batyuk,

Seyit A.Camtepe, and Sahin Albayrak. An android

application sandbox system for suspicious software

detection. 5th International Conference on Malicious and

Unwanted Software (Malware 2010), Nancy, France,2010.

[20] Georgios Portokalidis , Philip Homburg , Kostas

Anagnostakis , Herbert Bos, Paranoid Android: versatile

protection for smartphones. 26th Annual Computer Security

Applications Conference, December 06-10, 2010, Austin,

Texas

[21] Amir Houmansadr, Saman A. Zonouz, and Robin Berthier.

A Cloud-based Intrusion Detection and Response System for

Mobile Phones. IEEE/IFIP 41st International Conference ,

2011.

[22] R. Naraine. Google Android vulnerable to drive-by browser

exploit. http://blogs.zdnet.com/security/?p=2067, October

2008.

[23] Alex Tsow. Phishing with consumer electronics - malicious

home routers. 15th International World Wide Web

Conference (WWW2006), May 2006.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 3 Issue: 3 12 – 22

22
IJFRCSCE | March 2017, Available @ http://www.ijfrcsce.org

[24] J. Oberheide, E. Cooke, and F. Jahanian. CloudAV:

Nversion antivirus in the network cloud. 17th USENIX

Security Symposium, San Jose, CA, July 2008.

[25] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and

F.Jahanian. Virtualized in-cloud security services for mobile

devices. MobiVirt ‟08, pages 31–35, June 2008.

[26] Malicious apps hosted on Google store turn android phone

into zombies

 http://arstechnica.com/gadgets/2012/05/malicious-apps-

hostedin-google-market-turn-android-phones-into-zombies/

[27] Google now scanning for android apps for malware

http://www.cnet.com/news/google-now-scanning-android-

apps-formalware/

[28] Felt, Adrienne porte; Chin, Erika; Hanna, Steve; Song,

Dawn;Wanger, David. Android Permissions Demystified

2012, http://www.cs.berekeley.edu/~afelt/aandroid

_permissions.pdf

