
International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 117 – 123

117
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

Parameterized Complexity of Quick Sort, Heap Sort and K-sort Algorithms with

Quasi Binomial Input

Priyadarshani

Research Scholar, Department of

Statistics, Patna University, Patna, India

priyadarshini.bca.mmc@gmail.com

Soubhik Chakraborty*

*corresponding author

Professor, Department of Mathematics,

B.I.T Mesra, Ranchi, India

soubhikc@yahoo.co.in

Anchala Kumari

Professor, Department of Statistics,

Patna University, Patna, India

anchalastat@gmail.com

Abstract: Parameterized complexity is one of the important concepts that has emerged in the recent past in the field of computer science. It has

been observed that for certain algorithms such as sorting, the parameters of the input distribution characterizing the sorting elements are very

crucial in explaining the complexity of an algorithm (see Anchala, Chakraborty (2007,2008), Chakraborty&Sourabh,(2007)).The present paper

investigates the parameterized complexity of three sorting algorithms namely, Quick sort, Heap sort and K-sort (with the same average case

complexity O(Nlog2N)), for the quasi binomial input parameters and compares the results with those for binomial input parameters.

AMS Mathematics Subject classification code 62P99

Key words : Parameterized complexity , Empirical-O , Computer Experiment, quasi binomial input

__*****___

I. Introduction

Since long one of the problemsof great concern for the

researchers while examining the efficiency of sorting

algorithms, has been the problem of parameterized

complexity. The multiple parameters of the distribution

from which the array elements are being generated have

direct effect on the sorting time of the algorithms as such,

apart from the input size, the parameter of input distributions

which must also be taken into account for precise evaluation

of computational and time complexity of analgorithm. A

comprehensive literature is found to exist on the

parameterized complexity. To name a few are the works by

Anchala and Chakarborty(2007,2008,2009,2015),

Sudararajan and Chakarborty (2007), Chakarborty and

Saurabh(2007).Their approach is based onEmperical –O

analysis , an estimate of the statistical bound over a finite

range obtained by supplying numerical values to the weights

which emerge from computer experiment. A computer

experiment is a series of runs of a code for various inputs

and is called deterministic if it gives identical outputs if the

code is rerun for the same input. In this paper attempt has

been made to examine the parameterized complexity of

quick sort, heap sort and k sort, having the same average

case complexity O(Nlog2N).

Quasi binomial distribution has the probability of success

varying from trial to trial where as in Binomial distribution

it is fixed. There are situations demanding varying

probability of success. For example in a jury trial, the

probability pi that the ith juror takes a correct decision may

vary and in national TB testing the probability that an

animal will be found to be a reactor could depend on the

farming region (Boland(2007)).

We perform the empirical analysis of the results obtained by

applying the specified algorithms over the input data

generated from the quasi binomial and binomial

distribution.The codes are written in Dev C++ and 3
2

factorial experimentswere performed using Minitab

Statistical Package version 16.

The array size varied from 1 lac -10 lac which may be

considered large enough for practical data set.

The response(CPU time to run the code) the mean time in

seconds for different algorithms is given in the tables1-3

and the relative performance plots for binomial and quasi

binomial distributions under different algorithms are

presented in figures1-3. Average case analysis is performed

directly on program run time to estimate the weight based

statistical bound over a finite range by running computer

experiments. This estimate is called empirical-O.Time of an

operation is taken as weight. Weighing permits collective

consideration of all operations into a conceptual bound

called as statistical bound in order to distinguish it from the

count based mathematical bounds that are operation

specific.(Chakraborty and Sourabh, 2010).

II. Relative performance analysis of different Algorithms

The Binomial distribution has two parameters m and p, m

being the number of independent Bernoulli trials and p the

probability of success in each trial. The mean time under

different algorithms by varying N and fixing m at 1000 is

given in tables to follow.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 117 – 123

118
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

Table1: Data for quick sort (mean time in sec)

N P=.2 P =0.5 P=.8 P rand

100000 .35367 .28720 .3489 .28470

200000 1.40367 1.1166 1.3803 1.1128

300000 3.10000 2.4636 3.0833 2.4880

400000 5.48833 4.3850 5.5697 4.38760

500000 8.58033 6.8992 8.5589 6.83380

600000 12.3750 9.8526 12.3707 9.8960

700000 16.7627 13.5338 16.8107 13.6270

800000 21.9366 17.68875 21.8577 17.4786

900000 27.7303 22.0784 27.8573 22.2047

1000000 34.2713 27.2628 34.2670 27.05678

Figure-1: Relative performance of p=0.2, 0.5, 0.8 and p random for quick sort

10000008000006000004000002000000

35

30

25

20

15

10

5

0

N

e
x

e
c
u

t
io

n
 t

im
e

p=.5

p random

p=.2

p=.8

Variable

relative performance of p=.2,p=.5,p=.8 and p random

Table -2: Data for Ksort (mean time in sec)

N P=.2 P=.5 P=.8 Prand

100000 .7810 .6096 .7503 .6106

200000 3.0063 4.0198 2.98967 2.4062

300000 6.2300 5.3716 6.7190 5.3592

400000 12.0166 9.9072 11.9397 9.5980

500000 18.8156 15.0238 18.7949 14.978

600000 26.682 22.8832 26.7099 21.5746

700000 36.7319 30.5168 36.7606 29.4714

800000 48.158 41.0869 47.9140 38.3089

900000 60.8359 49.8287 60.591 48.6076

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 117 – 123

119
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

1000000 75.0027 62.4471 75.0099 60.008

Figure 2: Relative performance of p=0.2, 0.5, 0.8 and p random for K sort

10000008000006000004000002000000

80

70

60

50

40

30

20

10

0

N

e
x

e
c
u

ti
o

n
 t

im
e

p.2

p.5

p.8

rand

Variable

Relative perforance of p=.2, p=.5, p=.8 and prandom

Table -3 : Data for Heap sort (mean time in sec)

N P=.2 P=.5 P=.8 Prand

100000 .5010 .4998 .50533 .4906

200000 1.0520 1.0450 1.0547 1.0470

300000 1.6317 1.6344 1.6560 1.6348

400000 2.2410 2.2400 2.2383 2.226

500000 2.8863 2.8534 2.8387 2.8656

600000 3.4647 3.4602 3.4687 3.4620

700000 4.0593 4.0792 4.1057 4.1374

800000 4.7250 4.7480 4.7510 4.7970

900000 5.4497 5.3766 5.3873 5.4543

1000000 6.0490 5.9798 6.0469 6.0749

Figure-3: Relative performance of p=0.2, 0.5, 0.8 and p random for heap sort

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 117 – 123

120
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

10000008000006000004000002000000

6

5

4

3

2

1

0

N

e
x

e
c
u

ti
o

n
 t

im
e

p.2

p.5

p.8

pran

Variable

Relative performance of p=.2, p=.5, p=.8 and p random

The following points can be revealed from the above

analysis.

1. As far as the relative performance of quick sort and

k-sort algorithms is observed, both reveal almost

the same pattern. For N<300000, Quick sort as

well as K- sort both have the same complexity

measure irrespective of different values of p or

whether it is fixed or varies from trial to trial,

but for N> 300000, execution time at central

part of the distribution, i.e., for p=.5 coincides

with execution time when p is random in case of

Quick sort algorithm, however a little higher

complexity level is observed for p=.5 as

compared to p random in case of k sort

algorithm.

2. For homogeneous case (probability of success

same at each trial) we get an upper bound for tail

probabilities and lower bound for the more

central part of the distribution for sorting an

array of same size.

 3. Heap sort reveals a different pattern as compared

to the other two sorting algorithms. It shows the

same complexity level irrespective of the fact that

p is varying from trial to trial or it is same at each

trial. Even for homogeneous case (probability of

success same at each trial) complexity level

remains same at the tail probabilities as well as at

the central part of the distribution (p=.5) for

varying N.

Table-4: Data for different algorithms for varying p

N QS HS KS

100000 0.284700 0.4906 0.61060

200000 1.112800 1.0470 2.40620

300000 2.38800 1.6348 5.35920

400000 4.38760 2.24260 9.59580

500000 6.83380 2.86560 14.9780

600000 9.89680 3.4620 21.57498

700000 13.6270 4.13740 29.42139

800000 17.47860 4.7970 38.30899

900000 22.20473 5.45433 48.69759

1000000 27.05678 6.07499 60.00879

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 117 – 123

121
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

10000008000006000004000002000000

60

50

40

30

20

10

0

N

e
x

e
c
u

ti
o

n
 t

im
e

QS

HS

KS

Variable

Relative performance of different algorithms when p is variable

Figure-4: Relative performance of different algorithms when p is varying

Some interesting results are seemed to emerge from the

above table. For N>100000, heapsort outperforms the

quicksort. The reason for illperformance of quick sort may

be due to the increase in number of ties as N increases. As

far as the K-sort is considered,it consumes more time as

compared to other two algorithms for sorting array of same

size. However quicksort and K-sort both confirms to

Oemp(N
2
), whereas heap sort has O(Nlog2N) complexity.

Similar results are obtained when probability of success for

each trial is 0.5 (see Anchala Singh And

Chakarborty(2015))

III. Parameterized complexity

Parametrized complexity is one of the criterion for selection

of an algorithm among the several algorithms. The

parameter of input distribution has direct effect on the

complexity of an algorithm.

Table 5. Parameterized complexity of heap, k and quick sort

Probability of Success (p=0.5)

 Heap Sort K-Sort Quick Sort

Sources D.f. F p F p F P

N 2 18356.13 0.000 12719.788 0.000 775.04 0.000

M 2 17.5 0.000 14345.99 0.000 766.74 0.000

NM 4 1.75 0.273 1508.06 0.000 110.54 0.000

Probability of success (p random)

 Heap Sort K-Sort Quick Sort

Sources D.f. F p F p F P

N 2 32601.46 0.000 39907.0 0.000 285803.62 0.000

M 2 0.65 0.531 41190.83 0.000 285803.62 0.000

NM 4 0.56 0.695 5230.11 0.000 36195.52 0.000

The F and p values revealed that in case of Heap Sort,m has

significant and independent effect (mn interaction being non

significant) on sorting complexity, when the probability of

success is same from trial to trial. On the other hand

number of trials (m) has no effect on the complexity as

probability of success varies from trial to trial as shown by

the small value of F (.65 for m and .56 for mn). If we

compare the significant points of Quick and K sort

algorithms, it is found that the number of trials (m) shows

highly significant singular and interactive effect on sorting

efficiency of the algorithms irrespective of the Input

distributions,i.e., whether the Input distribution is Binomial

or Quasibinomial , m and mn both have significant effect on

sorting time. This implies that proper selection of input

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 117 – 123

122
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

parametersmay have rewarding effect on reducing the

complexity of an algorithm.

Now we shall try to find for which value of m the sorting

time is minimum. We try to find the optimal value of m for

all the algorithms under (i) p homogeneous and (ii) p non

homogeneous except for p varying in heap sort case as (m in

this case shows non significant effect on execution time).

10000008000006000004000002000000

16

14

12

10

8

6

4

2

m

a
v

e
ra

g
e

 e
x
e

c
u

ti
o

n
 t

im
e

qsort

ksort

Variable

relative efficiency of qsort and ksort when p varies and n=500000

Fig 5: Relative efficiency of qsort and ksort when p varies and n = 500000

10000008000006000004000002000000

16

14

12

10

8

6

4

2

m

a
v

e
ra

g
e

 e
x
e

c
u

ti
o

n
 t

im
e

ksort

qsort

hsort

Variable

optimal value of m for the three algorithms for n=500000 , p=.5

Figure – 6: optimal value of m for the three algorithms for n = 500000, p = 0.5

From the above two tables it is observed that irrespective of

the fact that which algorithm is being used or from which

distribution the array elements have been generated, the

execution time is inversely proportional to the number of

trials (m). Execution time decreases as the value of m is

increased.Thus a high value of m is preferableso as to

minimise the execution time .Secondly it is further

observed that for a fixed value of m ,K-sort consumes more

time than the quick sort(whether p varies or it does not

vary from trial to trial (figure-5&6). We have seen earlier

also that quick sort gives better performance than K-sort

(Figure-4) irrespective of the fact that array of any size is

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 117 – 123

123
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

being sorted. As for as the Quick Sort and Heap sort are

considered, for m<60,000, Heap sort is more efficient than

Quick sort(Figure-5) and after m>60000 Quick sort gives

better performance than Heap sort.

IV. Conclusion

1. As far as the empirical-O analysis is considered,

the average case complexity of Quick sort is same

whether p is fixed at .5 or p varies from trial to

trial. In case of K–sort, the average performance

for sorting an array of same size generated from

the two distributions is almost same but as far as

the preference is considered, K-sort when applied

to array generated from quasi binomial gives better

result. Average complexity level in case of Heap

sort remains same whether array is generated from

quasi binomial or binomial distribution with tail

probabilities or keeping the probability of success

and failure as equal.

2. As far as the relative performance of the three

algorithms is considered while sorting an array of

fixed size generated from quasi binomial

distribution, heap sort is most preferable.

3. The different behaviour of algorithms to input

parameters can be summarized by parametric

complexity analysis. The complexity analysis

exhibits that number of trials plays an important

role in explaining the complexity of sorting

algorithms. As for as the heap sort is considered, m

has no effect on the complexity for varying p,

while it has significant but independent effect on

complexity for fixed p. Quick sort and K-sort

algorithms both are highly affected by the value of

m . A high value of m has diminishing effect on the

complexity.

4. Lastly it may be inferred, that for sorting an array

generated from binomial distribution irrespective

of its size, heap sort gives better performance for

m(no.of trails)<60,000, and for m>62000,

quicksort outperforms the heap sort and for values

of m between 60,000 to 62,000 either of the two

algorithms can be used for sorting purpose.When

the array of a fixed size is generated from Quasi

binomial, heap sort may be preferred with

moderate value of m. As mentioned earlier,

theoretically , all the three algorithms exhibit to

same average complexity but heap sort for m

<60,000 with binomial inputs and for moderate

value of m with quasi binomial inputs for sorting

an array of any size supports to worst case

complexity O(Nlog2N)<O(N
2
), worst case

complexity of Quick and K sorts.

Acknowledgements and Declaration of conflict

of interest: The authors hereby declare that this

research did not receive any financial grant. They

further declare that they do not have any conflict of

interest.

References

[1] Anchala Kumari, S. Chakraborty, Software Complexity ;

A Statistical Complexity,A Statistical Case Study

Through Insertion Sort, journal of Applied Math. And

Computation vol.190(1),2007, p. 40-50

[2] Anchala Kumari, S. Chakraborty, A Simulation study on

Quicksort Parameterized complexity using response

surface design; International journal of Mathematical

Modeling , Simulation and Applications.vol.1,no.,pp,

448-458,2008.

[3] Anchala Kumari, S. Chakraborty, Parameterized

Complexity; A Statistical Approach CombiningFactorial

Experimentswith Principal Component Analysis:

International journal of Ccomputer Science

Engineering,2013, vol. 2, No. 5, 166-176

[4] Anchala Kumari, Niraj Kumar Singh ansd Soubhik

Chakraborty; A Statistical

Comparative Study of Some Sorting Algorithms,

International journal in Foundations

of Computer Science and Technology, Vol.5, No. 4, July

2015, 21-29

[5] P.J.Boland, The Probability Distribution of the number of

Successes in Independent Trials, Communications in

Statistics –Theory and Methods,36:132-131, 2007.

[6] S.Chakraborty, S.K.Sourabh,On Why an Algorithm

Time Complexity Measure can be System Invariant

rather than System Independent,Applied Math and

Computation, Vol.190(1) 2007,p.195-204.

[7] S.Chakraborty K.K. Sundararajan , B.K. .Das and

S.K.Sourabh On How Statistics Provides a Reliable and

Valid Measure for an Algorithm’s Complexity.

InterStat,Dec2004#2http://InterStat,statournals.net/

[8] . K. K. Sundararajan, M. Pal, S. Chakraborty and N. C.

Mahanti, K-Sort: A New Sorting Algorithm that beats

Heap Sort for n <= 70 lakhs!, International on Recent

Trends in Engineering and Technology (ACEEE), Vol. 8,

No. 1, Jan 2013, 64-67

[9] S. Chakraborty and S. K. Sourabh, A Computer

Experiment Oriented Approach to Algorithmic

Complexity, Lambert Academic Publishing, 2010

