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Abstract: Parameterized complexity is one of the important concepts that has emerged in the recent past in the field of computer science. It has 

been observed that for certain algorithms such as sorting, the parameters of the input distribution characterizing the sorting elements are very 

crucial in explaining the complexity of an algorithm (see Anchala, Chakraborty (2007,2008), Chakraborty&Sourabh,(2007)).The present paper 

investigates  the parameterized complexity of three sorting algorithms namely, Quick sort, Heap sort and K-sort ( with the same average case 

complexity O(Nlog2N)), for the quasi binomial input parameters and compares the results with those for binomial input parameters. 
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I. Introduction 

Since long one of the problemsof great concern for the 

researchers while examining the efficiency of sorting 

algorithms, has been the problem of parameterized 

complexity.  The multiple parameters of the distribution 

from which the array elements are being generated have 

direct effect on the sorting time of the algorithms as such, 

apart from the input size, the parameter of input distributions 

which must also be taken into account for precise evaluation 

of computational and time complexity of analgorithm. A 

comprehensive literature is found to exist on the 

parameterized complexity. To name a few are the works by 

Anchala and Chakarborty(2007,2008,2009,2015), 

Sudararajan and Chakarborty (2007), Chakarborty and 

Saurabh(2007).Their approach is based onEmperical –O 

analysis , an estimate of the statistical bound over a finite 

range obtained by supplying numerical values to the weights 

which emerge from computer experiment. A computer 

experiment is a series of runs of a code for various inputs 

and is called deterministic if it gives identical outputs if the 

code is rerun for the same input. In this paper attempt has 

been made to examine the parameterized complexity of 

quick sort, heap sort and k sort, having the same average 

case complexity O(Nlog2N). 

Quasi binomial distribution has the probability of success 

varying from trial to trial where as in Binomial distribution 

it is fixed. There are situations demanding varying 

probability of success. For example in a jury trial, the 

probability  pi that the ith juror takes a correct decision may 

vary and in national TB testing the probability that an 

animal will be found to be a  reactor could depend on the 

farming region (Boland(2007)). 

 

We perform the empirical analysis of the results obtained by 

applying the specified algorithms over the input data 

generated from the quasi binomial and binomial 

distribution.The codes are written in Dev C++ and 3
2
 

factorial experimentswere performed using Minitab 

Statistical Package version 16. 

The array size varied from 1 lac -10 lac which may be 

considered large enough for practical data set. 

The response( CPU time to run the code)  the mean time in 

seconds for different algorithms  is given in the tables1-3 

and the  relative performance plots for binomial and quasi 

binomial distributions under different algorithms are 

presented in  figures1-3. Average case analysis is performed 

directly on program run time to estimate the weight based 

statistical bound over a finite range by running computer 

experiments. This estimate is called empirical-O.Time of an 

operation is taken as weight. Weighing permits collective 

consideration of all operations into a conceptual bound  

called as statistical bound in order to distinguish it from the 

count based mathematical bounds that are operation 

specific.(Chakraborty and Sourabh, 2010). 

 

II. Relative performance analysis of different Algorithms  

The Binomial distribution has two parameters m and p, m 

being the number of independent Bernoulli trials and p the 

probability of success in each trial. The mean time under 

different algorithms by varying N and fixing m at 1000 is 

given in tables to follow. 
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Table1:  Data for quick sort (mean time in sec) 

N P=.2 P =0.5 P=.8 P rand 

100000 .35367 .28720 .3489 .28470 

200000 1.40367 1.1166 1.3803 1.1128 

300000 3.10000 2.4636 3.0833 2.4880 

400000 5.48833 4.3850 5.5697 4.38760 

500000 8.58033 6.8992 8.5589 6.83380 

600000 12.3750 9.8526 12.3707 9.8960 

700000 16.7627 13.5338 16.8107 13.6270 

800000 21.9366 17.68875 21.8577 17.4786 

900000 27.7303 22.0784 27.8573 22.2047 

1000000 34.2713 27.2628 34.2670 27.05678 

 

 

Figure-1: Relative performance of p=0.2, 0.5, 0.8 and p random for quick sort 
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Table -2:  Data for Ksort (mean time in sec) 

N P=.2 P=.5 P=.8 Prand 

100000 .7810 .6096 .7503 .6106 

200000 3.0063 4.0198 2.98967 2.4062 

300000 6.2300 5.3716 6.7190 5.3592 

400000 12.0166 9.9072 11.9397 9.5980 

500000 18.8156 15.0238 18.7949 14.978 

600000 26.682 22.8832 26.7099 21.5746 

700000 36.7319 30.5168 36.7606 29.4714 

800000 48.158 41.0869 47.9140 38.3089 

900000 60.8359 49.8287 60.591 48.6076 
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1000000 75.0027 62.4471 75.0099 60.008 

 

 

Figure 2: Relative performance of p=0.2, 0.5, 0.8 and p random for K sort 
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Table -3 : Data for Heap sort (mean time in sec) 

N P=.2  P=.5 P=.8 Prand 

100000 .5010 .4998 .50533 .4906 

200000 1.0520 1.0450 1.0547 1.0470 

300000 1.6317 1.6344 1.6560 1.6348 

400000 2.2410 2.2400 2.2383 2.226 

500000 2.8863 2.8534 2.8387 2.8656 

600000 3.4647 3.4602 3.4687 3.4620 

700000 4.0593 4.0792 4.1057 4.1374 

800000 4.7250 4.7480 4.7510 4.7970 

900000 5.4497 5.3766 5.3873 5.4543 

1000000 6.0490 5.9798 6.0469 6.0749 

 

 

Figure-3: Relative performance of p=0.2, 0.5, 0.8 and p random for heap sort 
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The following points can be revealed from the above 

analysis. 

1. As far as the relative performance of quick sort and 

k-sort algorithms is observed, both reveal almost 

the same pattern. For N<300000, Quick sort as 

well as K- sort both have the same complexity 

measure irrespective of different values of p or 

whether it is fixed or varies from trial to trial, 

but for N> 300000, execution time at central 

part of the distribution, i.e., for p=.5 coincides 

with execution time when p is random in case of 

Quick sort algorithm, however a little higher 

complexity level is observed for p=.5 as 

compared to p random in case of k sort 

algorithm. 

2. For homogeneous case (probability of success 

same at each trial) we get an upper bound for tail 

probabilities and lower bound for the more 

central part of the distribution for sorting an 

array of same size. 

 3. Heap sort reveals a different pattern as compared 

to the other two sorting algorithms. It shows the 

same complexity level irrespective of the fact that 

p is varying from trial to trial or it is same at each 

trial. Even for homogeneous case (probability of 

success same at each trial) complexity level 

remains same at the tail probabilities as well as at 

the central part of the distribution (p=.5)  for 

varying N. 

 

Table-4:  Data for different algorithms for varying p 

N QS HS KS 

100000 0.284700 0.4906 0.61060 

200000 1.112800 1.0470 2.40620 

300000 2.38800 1.6348 5.35920 

400000 4.38760 2.24260 9.59580 

500000 6.83380 2.86560 14.9780 

600000 9.89680 3.4620 21.57498 

700000 13.6270 4.13740 29.42139 

800000 17.47860 4.7970 38.30899 

900000 22.20473 5.45433 48.69759 

1000000 27.05678 6.07499 60.00879 
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Figure-4: Relative performance of different algorithms when p is varying 

 

Some interesting results are seemed to emerge from the 

above table. For N>100000, heapsort outperforms the 

quicksort. The reason for illperformance of quick sort may 

be due to the increase in number of ties as N increases.  As 

far as the K-sort is considered,it consumes more time as 

compared to other two algorithms for sorting array of same 

size. However quicksort and K-sort both confirms to 

Oemp(N
2
), whereas heap sort has O(Nlog2N) complexity. 

Similar results are obtained when probability of success for 

each trial is 0.5 (see Anchala Singh And 

Chakarborty(2015)) 

 

III. Parameterized complexity 

Parametrized complexity is one of the criterion for selection 

of an algorithm among the several algorithms. The 

parameter of input distribution has direct effect on the 

complexity of an algorithm.  

Table 5.   Parameterized complexity of heap, k and quick sort 

Probability of Success (p=0.5) 

 Heap Sort K-Sort Quick Sort 

Sources D.f.     F p     F p     F P 

N 2 18356.13 0.000 12719.788 0.000 775.04 0.000 

M 2 17.5 0.000 14345.99 0.000 766.74 0.000 

NM 4 1.75 0.273 1508.06 0.000 110.54 0.000 

Probability of success (p random) 

 Heap Sort K-Sort Quick Sort 

Sources D.f.     F p     F p     F P 

N 2 32601.46 0.000 39907.0 0.000 285803.62 0.000 

M 2 0.65 0.531 41190.83 0.000 285803.62 0.000 

NM 4 0.56 0.695 5230.11 0.000 36195.52 0.000 

 

The F and p values revealed that in case of Heap Sort,m has 

significant and independent effect (mn interaction being non 

significant) on sorting complexity, when the probability of 

success is same from trial to trial.  On the other hand 

number of trials (m) has no effect on the complexity as 

probability of success varies from trial to trial as shown by 

the small value of F (.65 for m and .56 for mn). If we 

compare the significant points  of  Quick and K sort 

algorithms,  it is found that the number of trials  (m)  shows 

highly significant  singular and interactive effect on sorting 

efficiency of the algorithms irrespective of the Input 

distributions,i.e., whether the Input distribution is Binomial 

or Quasibinomial , m and mn both have significant effect on 

sorting time. This implies that proper selection of input 



International Journal on Future Revolution in Computer Science & Communication Engineering                                       ISSN: 2454-4248 
Volume: 4 Issue: 1                                                                                                                                                                                       117 – 123 

_______________________________________________________________________________________________ 

122 
IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org                                                                 

_______________________________________________________________________________________ 

parametersmay have rewarding effect on reducing the 

complexity of an algorithm. 

Now we shall try to find for which value of m the sorting 

time is minimum.  We try to find the optimal value of m for 

all the algorithms under (i) p homogeneous and (ii) p non 

homogeneous except for p varying in heap sort case as (m in 

this case shows non significant effect on execution time). 
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Fig  5: Relative efficiency of qsort and ksort when p varies and n = 500000 
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Figure – 6: optimal value of m for the three algorithms for n = 500000, p = 0.5 

 

From the above two tables it is observed that irrespective of 

the fact that  which algorithm is being  used or from which 

distribution the array elements have been generated, the 

execution time is inversely proportional to the number of 

trials (m). Execution time decreases as the value of m is 

increased.Thus a high value of m is preferableso as to 

minimise the execution time .Secondly it is further  

observed that for a fixed value of m ,K-sort consumes more 

time than the quick sort(whether  p  varies or it does not 

vary from trial to trial (figure-5&6). We have seen earlier 

also that quick sort gives better performance than K-sort 

(Figure-4) irrespective of the fact that array of any size is 
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being sorted.  As for as the Quick Sort and Heap sort are 

considered, for m<60,000, Heap sort is more efficient than 

Quick sort(Figure-5) and after m>60000 Quick sort gives 

better performance than Heap sort. 

 

IV. Conclusion 

1. As far as the empirical-O analysis is considered, 

the average case complexity of Quick sort is same 

whether p is fixed at .5 or p varies from trial to 

trial. In case of K–sort, the average performance 

for sorting an array of same size generated from 

the two distributions is almost same but as far as 

the preference is considered, K-sort when applied 

to array generated from quasi binomial gives better 

result.  Average complexity level in case of Heap 

sort remains same whether array is generated from 

quasi binomial or binomial distribution with tail 

probabilities or keeping the probability of success 

and failure as equal. 

 

2. As far as the relative performance of the three 

algorithms is considered while sorting an array of 

fixed size generated from quasi binomial 

distribution, heap sort is most preferable. 

3. The different behaviour of algorithms to input 

parameters can be summarized by parametric 

complexity analysis. The complexity analysis 

exhibits that number of trials plays an important 

role in explaining the complexity of sorting 

algorithms. As for as the heap sort is considered, m 

has no effect on the complexity for varying p, 

while it has significant but independent effect on 

complexity for fixed p. Quick sort and K-sort 

algorithms both are highly affected by the value of 

m . A high value of m has diminishing effect on the 

complexity. 

4. Lastly it may be inferred, that for sorting an array 

generated from binomial distribution irrespective 

of its size, heap sort gives better performance  for 

m(no.of trails)<60,000,  and for m>62000, 

quicksort outperforms the heap sort and for values 

of m between 60,000 to 62,000 either of the two 

algorithms can be used for sorting purpose.When 

the array of a fixed size is generated from Quasi 

binomial, heap sort may be preferred with 

moderate value of m. As mentioned earlier, 

theoretically , all the three algorithms exhibit to 

same average complexity but heap sort for m 

<60,000  with binomial inputs and for moderate 

value of m with quasi binomial inputs for sorting 

an array of any size supports to worst case 

complexity O(Nlog2N)<O(N
2
), worst case 

complexity of Quick and K sorts. 
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