
International Journal on Future Revolution in Computer Science & Communication Engineering                                       ISSN: 2454-4248 
Volume: 4 Issue: 1                                                                                                                                                                                         207 – 209 

_______________________________________________________________________________________________ 

207 

IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org                                                                 

_______________________________________________________________________________________ 

Neural Networks as Radial-Interval Systems through Learning Function 

Dr. R. Usha Rani
#1

,  

Associate Professor, CVR College of Engineering,Hyderabad.India. 

teaching.usha@gmail.com 

 

 
Abstract— This paper presents a novel dimension   of neural networks through the approach of interval systems for great more forecasting 

activity. The artificial neural network (ANN) based models are the most popular ones for load forecasting and other applications. This approach 

is only a thought line that can enhance the fundamental requirement of all networks giving and incorporating the analytical and expertise 

knowledge in forecasting from the existential approaches. [1] Interval systems as an approach to approximate interval models by neural 

networks is proposed.  

 
Keywords— MLP, RBFNN, Interval Systems. 

__________________________________________________*****_________________________________________________ 

I. INTRODUCTION  

An enormous upwelling of interest has grown inrecent years in 

application of neural networks to industrial processes. Their 

advantage isthat no complex mathematical formulation or 

quantitativecorrelation between inputs and outputs is 

required.[2] Many years‟ data are also not necessary. 

Theeffective performance of Neural networks[3,4,5] in 

thecontext of ill-defined processes has led to 

successfulapplication in  forecasting procedures. As a 

consequence,pattern recognition [6], expert systems [7,8]and 

neural networks [9,17] have been proposed forelectric load 

forecasting. Expert system based methodscapture the expert 

knowledge into a comprehensivedatabase, which is then used 

for predicting the futureload. These models exploit knowledge 

of human expertsfor the development of rules for forecasting. 

However,transformation of an expert knowledge to a set 

ofmathematical rules is often a very difficult task. In this aspect 

a quantitative analysis termed knowledge can uplift our work 

of forecasting. 

II. RELATED WORK 

The literature study behind this is purely a analytical way of 

incorporating the inputs of multilayer perceptron into the 

defined structured method called interval systems. Radial basis 

functions networks are networks, which features the 

architecture of the instar –out star model and uses the hybrid 

unsupervised and supervised learning scheme, is the RBFN 

suggested by Moody and Darken [2].The RBFN is designed to 

perform input-output mapping trained by examples (xk, dk), 

k_/1, 2,. . ., p. The RBFN is based on the concept of the locally 

tuned andoverlapping receptive field structure, studied in 

thecerebral cortex, the visual cortex, etc. Unlike thein star-out 

star model, in which the hidden nodes are oflinear winner-take-

all-nodes type, the RBFN hiddennodes follow a normalized 

Gaussian activation function: 

zq_gq(x)§Rq(x)Xlk_1 

Rk(x) _exp[_jx_mqj2=2s2q] 

Xlk_1exp[_jx_mkj2=2s2k] 

Where x is the input vector. Thus, the hidden node qgives a 

maximum response to input vectors close to mq. Each hidden 

node q is said to have its own receptivefield Rq (x) in the input 

space, which is a region centredon mq with size proportional to 

sq , where mq and sq2are the mean (an m-dimensional vector) 

and variance ofthe qth Gaussian function, respectively. 

Gaussian functionsare a particular example of radial basis 

functions. 

The output of the RBFN is simply the hidden nodeoutput 

weighted sum: 

yi_ai_Xlq_1 

wiqzq_ui_ 

whereai ( _/) is the output activation function and ui is 

thethreshold value. Generally, ai( _/) is an identity function(i.e. 

the output node is a linear unit) and ui_/0.The present work 

adopts a systematic approach to theproblem of centre selection. 

Because a fixed centrecorresponds to a given regressed in a 

linear regressionmodel, the selection of RBF centres can be 

regarded as aproblem of subset selection. The orthogonal 

leastsquares method can be employed as a forward 

selectionprocedure, which constructs RBFN in a rational 

way.[14,15] 

The process goes like choosing the appropriate RBF centres 

one byone from taken training data points until a 

satisfactorynetwork is obtained. Each selected centre 

minimizesthe increment to the desired output variance, thus 

illconditioned problems; the frequent happening can stop the 

recurrence. In contrast to most learning algorithms, whichcan 

only work if a fixed network structure is firstspecified, the 

orthogonal least squares algorithm is astructural identification 

technique, where the centresand estimates of the corresponding 

weights can besimultaneously determined in a very efficient 

manner during learning. Orthogonal least squares 

learningprocedure generally produces an RBF network 

smallerthan a randomly selected RBF network [3]. Due to 

itslinear computational procedure at the output layer, theRBFN 

is faster in training time compared to its BPcounterpart.A major 

drawback of this method is associated withthe input space 

dimensionality. For large numbers ofinputs units, the number 

of radial basis functionsrequired can become excessive. If too 

many centres areused, the large number of parameters available 

in theregression procedure will cause the network to be 

oversensitive to the details of the particular training set 

andresult in poor generalization performance (overfit). Avoid 



International Journal on Future Revolution in Computer Science & Communication Engineering                                       ISSN: 2454-4248 
Volume: 4 Issue: 1                                                                                                                                                                                         207 – 209 

_______________________________________________________________________________________________ 

208 

IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org                                                                 

_______________________________________________________________________________________ 

this problem, both the forward selection and 

zeroorderregularization techniques are proposed and appliedin 

[3] to construct parsimonious RBFN withimproved 

generalization properties. 

A RBF network with m outputs and nhhidden nodes can be 

expressed as: 

𝑦𝑖 𝑡 = 𝑤𝑖𝑜 + 𝑤𝑖𝑗∅   𝑣 𝑡 − 𝐶𝑗 𝑡    

𝑛ℎ

𝑗=𝑖

 

Where i=1,.....m. 

 

where wij, wi0 and c (t) j are the connection weights, bias 

connection weights and RBF centresrespectively, v(t) is the 

input vector to the RBF network composed of lagged input, 

lagged outputand lagged prediction error and f(·) is a non-

linear basis function. (·) denotes a distance measurethat is 

normally taken to be the Euclidean norm.[18]Since neural 

networks are highly non-linear, even a linear system has to be 

approximated usingthe non-linear neural network model. 

However, modelling a linear system using a non-linear model 

can never be better than using a linear model. Considering this 

argument, the RBF network withadditional linear input 

connections is used. The proposed network allows the network 

inputs to beconnected directly to the output node viaweighted 

connections to form a linear model in parallelwith the non-

linear standard RBF model The new RBF network with m 

outputs, n inputs, nh hidden nodes and nl linear input 

 

𝑦𝑖 𝑡 = 𝑤𝑖𝑜 + 
𝑛𝑡

𝑗=1

α + 𝑤𝑖𝑗∅   𝑣 𝑡 − 𝐶𝑗 𝑡    

𝑛ℎ

𝑗=𝑖

 

 

where the α„s and vl‟s are the weights and the input vector for 

the linear connections respectively.The input vector for the 

linear connections may consist of past inputs, outputs and noise 

lags. Sincel's appear to be linear within the network, the α's can 

be estimated using the same algorithm as forthe w‟s. 

 

III. INTERVAL SYSTEMS 

Moore defined interval arithmetic for rational functions 

composed of a finite number of the four basic arithmetic 

operations on intervals of finite real 

numbers.[11,12,]Corresponding to the situation with real 

numbers, operations on intervals with extended (including 

infinite) endpoints and division by intervals containing zero 

were not defined. [19,20]Originally, neither was raising an 

interval to an integer power. Sincethe original formulation, the 

integer and real power functions have been given interval 

extensions, but only for intervals contained within function‟s 

natural domainof definition. The sets of values that finite 

interval operations are defined to contain are described as 

follows: 

 

Let [a, b] denote a real, closed, compact interval constant.  

 

That is, for example: 

[a, b] = {x ∈  IR | a ≤ x ≤ b} , (1) 

 

where IR, denotes the set of finite real numbers, {x | −∞< x < 

+∞}. Ifop ∈  {+,−,×,†} denotes one of the four basic arithmetic 

operators (BAOs), where d < 0 or 0 < c in the case of division, 

because division by zero is not definedfor real numbers. The 

right-hand side of (2) defines the sets of values that 

intervalarithmetic operations on finite real intervals must 

contain. While computing narrowintervals is desirable, the only 

requirement is containment. The right-hand side of(2) is the set 

of values that the operation, [a, b] op[c, d] must contain. The 

termcontainment set is used to refer to the set of values that an 

interval result mustcontain. 

 

Arithmetic operation monotonicity makes possible the 

following rules to computeendpoints of finite interval 

arithmetic operations: 

 
[a, b] +[c, d] = [a +c, b +d] (3a) 

[a, b] −[c, d] = [a −d, b − c] (3b) 

[a, b] ×[c, d] = _ min (a ×c, a × d, b × c, b × d) , 

max (a × c, a × d, b ×c, b × d) _ (3c) 

[a, b] ÷[c, d] = _ min (a ÷c, a ÷d, b ÷c, b ÷d) , 

max (a ÷ c, a ÷ d, b ÷ c, b ÷ d) _ (3d) 

 

where, to exclude division by intervals containing zero, d < 0 

or 0 < c. Directedrounding is used to guarantee containment 

when interval operations are implementedusing IEEE-754 

floating-point operations. [4,5]Dependence even where there 

forms no rounding error, this may result in intervals that no 

way can treated as requirement. Therefore, it is not surprising if 

a nominally positive interval nearzero contains negative values. 

[16,17] Subsequently, if a nominally non-negative 

intervalresult contains negative values and is an argument of an 

operation or function witha non-negative domain, existing 

unclosed interval systems will raise an exception. 

For example, consider the functionf (x) = _x(x − 1) +1, 

(4)Evaluated over the interval X = [−2, 2] using interval 

arithmetic, the value of X(X − 1) + 1 is [−5, 7]. No rounding 

errors have been made. Every arithmeticoperation is exact. The 

above result is an example of the dependence problem 

ininterval arithmetic. The expression X(X −1)+1 is evaluated as 

if it were instead,X(Y − 1) + 1, with the intervals, X and Y, just 

by coincidence having the samevalue. To connote the fact that 

the interval variables X and Y are not identical, but 

that2arithmetic operations on a pair of intervals, [a, b] and [c, 

d] must produce a newinterval, say _e, f _, such that_e, f _ ⊇ 

{x op y | x ∈  [a, b] and y ∈  [c, d]} , As long as interval 

expressions are defined in terms of real or extended-real 

operationsand functions, no escape exists from limitations on 

the domain of operationsand functions in the underlying point 

systems.  

 

These limitations take two forms:In the real and extended real 

systems (hereafter point systems), functions areundefined 

outside their domain of definition.In point systems, a function 

maps points from its domain to points in its range.[12] Multi-

valued relations are mappings of sets of points in the relation‟s 

domain setonto sets of points in its range set.Intervals are 

compact sets of points. This permits the underlying 

systemfromwhichinterval arithmetic is derived to also be sets, 

not single points. The closedcentred based set as a system is 
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defined, which gives the possibility of constructing the closed 

interval system. This tries to produce enclosures of sets in this 

or other possible closed centred based set systems. The 

“Simple” closed interval system, is implemented in the most 

significant practical consequence of programming with a 

closed intervalsystem is that without exception.  The valid 

interval result is obtained through the interval operation and an 

intrinsic function, along with its interval operands. In a 

closedinterval system have no “exceptional events” with which 

to contend.This result is not limited to a subset of intrinsic 

functions or operations and functions. 

 

System constructs that either accept or produce REAL type 

data itemshave exception-free interval versions. Therefore, 

without exception, anyinterval expression can be evaluated if it 

can be written as a code list, whether it isa function or a 

relation. The returned interval is guaranteed to be an enclosure 

ofthe set of all possible values of the expression over the 

argument intervals, irrespectiveof whether the code list 

includes branches, loops and subprogram calls, arrayreferences, 

or overwriting of a variable‟s value by a new value. The set of 

all possibleexpression values is the containment set of an 

expression and is proved in, tobe the topological closure of the 

expression. 

 

Interval systems have a number of advantages over the 

additional realnumber-based interval system. Two new items 

are worthy of the attention byclosed interval systems algorithm 

developers are: 1.how to derive containment sets of expressions 

both at singular points and at argumentsthat create 

indeterminate formsand 2. How to verify expression continuity 

when required. 

 

This Interval arithmetic 

The addition, subtraction and multiplication of two 

intervals [a,b] and [c,d ] are respectively defined as 

Addition: [a,b]+[c,d]=[a+b,c+d] 

Subtraction: [a,b]−[c,d]=[a−b,b−c] 

Multiplication: [a,b][c,d] = [min(ac,ad,bc,bd), 

max(ac,ad,bc,bd)] 

 

This possibility of the interval values evaluated through these 

systems can enhance our output result of RBFNN such that the 

ratio of comparison factor for prediction can increase its 

measure of equality in terms of similarity check. Number 

neurons in the hidden layer also influences the performance of 

RBF NN.But with toomany nodes it will take a longer time to 

train and some times over fit to data even though we go along 

with interval systems. 

 

 

 IV.CONCLUSION 

The advantage of RBF neural network is that it can be trained 

much faster than MLP neural network. IT can also give a better 

performance with minimum number of training data set to 

perform the successful training and this performance can 

greatly be influenced by taking the linear data set and as well 

the non linear data set in the form of interval systems values of 

evaluating their activation function and the hidden layer input 

values. Future objective can be testing   the system with a 

standard database, to compare with other training algorithms. 

This approach of successful study of rbfnn through interval 

systems may drives towards the better prediction works. 
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