
Framework for Automatic Checkpoint Generation

A Vani Vathsala

Dept of CSE, CVR College of Engineering, Hyderabad, India

e-mail: atlurivv@yahoo.com

 Tel.: +919866586106

Abstract Web services provide services to their consumers in accordance with terms and conditions laid down in a document called as Service

Level Agreement (SLA). Web services have to abide by these terms and conditions failing which, SLA faults result. Fault handling of web

services is a key mechanism using which SLA faults can be avoided. We propose fault handling of choreographed web services using

checkpointing and recovery. We propose checkpointing in three stages: design, deployment and dynamic checkpointing. In this paper we

propose a framework for generation of checkpoint locations automatically in a given choreography document by applying design time

checkpointing rules. We have also developed a tool to demonstrate that the proposed framework is indeed implementable.

Keywords- web service, checkpointing, framework, automatic

__*****___

I. INTRODUCTION

A web service is a piece of software that provides a service
and is accessible over Internet. A web service that implements
a business process, without invoking another web service, is
called as atomic web service. Otherwise it is called as a
composite web service.

A set of services working in tandem with each other to

achieve a business goal are called as choreographed web
services. They interact with each other according to a
predefined sequence specified in a design document called as
choreography document.

As composite web services operate over Internet, providing

fault handling to composite web services is of primary
importance. We have proposed a design time checkpointing
policy[1] that introduces checkpoints in a choreography. In the
event of transient failures this checkpoint arrangement avoids
re-invocation of web services that perform non repeatable
actions.

In this paper we propose a framework to generate
checkpoint locations in a given a choreography document
(specified in xmi format), by applying design time checkpoint
rules discussed in [1]. We would like to extend the framework
to incorporate deployment time and dynamic checkpoint rules
also for generating checkpoint locations, in our future work.

This paper is organized as follows: Section II presents the

proposed framework for automatic checkpoint generation,

section III presents design time checkpoint policy in brief.

Section IV describes the developed tool for automatic

checkpoint generation. Section V presents conclusion and

future work.

II. FRAMEWORK FOR AUTOMATIC CHECKPOINT

GENERATION

In this section a framework is presented that supports

automatic generation of checkpoints at design time in a given

choreography.

It mainly consists of two modules: 1. Design time

Checkpointing Module (DSM) 2. Recovery module.

A. Design time Checkpointing Module (DSM)

DSM in turn consists of two sub modules: Pattern

identification module and Checkpointing module. Figure 1

presents the proposed framework.

Pattern identification module:

It takes as input, a choreography depicted in the form of a
UML activity diagram and identifies atomic patterns present in
the given choreography, using the interaction patterns proposed
in [1] . These patterns are stored in the database. It then models
the choreography as a composition of the identified patterns
and expresses the given choreography as a pattern string [1]. It
outputs this pattern string PS and the set of atomic patterns[1]
SP which constitute the pattern string.

Checkpointing module

It takes the pattern string and the set of patterns generated
by pattern identification module, as input and then applies the
checkpointing and logging rules to insert checkpointing
locations in the choreography. It implements design time
checkpointing algorithm presented in[1].

Output of the checkpointing Module is the UML activity
diagram which is given as input but has checkpointing
locations appended to it. This output diagram helps the
participating web services to insert checkpoints at appropriate
locations in their code.

237
 IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 237 - 240

238

IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

Figure 1: Framework for automatic checkpoint generation

The module also outputs the pattern string appended with

design time checkpoints. This pattern string is used as input to
checkpointing algorithms executed at later stages, i.e. at
deployment stage and execution stage.

Figure 2 depicts the working of DSM.

Figure 2: Working of DSM

B. Recovery module

Recovery module takes as input failed web service instance id.

It restores the failed web service instance to the latest

checkpointed state and replays logged messages as indicated

by recovery rules[1]. It may be noted here that the proposed

recovery rules do not require recovery of other web services,

other than the failed instance.

III. CHECKPOINTING POLICY

Design time checkpointing policy identifies checkpointing

locations in patterns.

Checkpointing policy is based on the following two principles:

1. A participant executing a non repeatable action must be

checkpointed immediately after performing the non repeatable

action.

2. If the receiver in a pattern executes a non repeatable action,

the initiator of the pattern should not initiate the interaction

again in case of its failure.

IV. AUTOMATIC CHECKPOINT GENERATION TOOL

In this subsection an implementation of the proposed

framework is presented. We have developed a tool called

ACGT (Automatic Checkpoint Generation Tool) that inserts

checkpoints into a given choreography.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 237 - 240

239

IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

ACGT is implemented in Java under Eclipse IDE. The

following four step procedure is followed:

As a first step of implementation the choreography of web

services is generated using UML Activity diagrams. Input to

ACGT is a UML diagram that is generated using Visual

Paradigm for UML 10.2 Enterprise Edition. Any other UML

tool such as Rational Rose, Umbrella etc may also be used.

In the second step, the diagram is exported in XMI (XML

Metadata Interchange) format. XMI is an OMG standard for

exchanging metadata information which uses XML tags.

In the third step the XMI file generated in step 2 is given as

input to ACGT. In order to extract patterns from XMI file,

DOM (Document Object Model) and SAX(Simple API for

XML) APIs are used. ACGT generates graphical elements

representing checkpointing locations in the given UML activity

diagram. The output again is in XMI format.

As a fourth step the XMI file generated in step three is

imported in Visual Paradigm to view the diagram along with

appended checkpoints.

Figure 3 (a) depicts an example choreography which is given

as input to ACGT and Figure 3 (b) depicts the same

choreography with checkpointing locations inserted by ACGT.

In this example a choreography that consists of non repeatable

actions (red coloured actions) is depicted. Here, ACGT

generates checkpoints based on checkpointing rules[1] CR1

and CR2 and message logging rules LR1 and LR2 resulting in

checkpointing pattern CP2.

V. CONCLUSION AND FUTURE SCOPE

In this paper we have presented a framework for generating

checkpoint locations in a choreography document given as

input. To start with, we have considered only design time

checkpointing rules for automatic checkpoint generation. We

have even developed a tool that uses the proposed framework

for inserting checkpoint locations into a given choreography

document.

As part of our future work we would like to extend the

framework to incorporate deployment time and dynamic

checkpointing rules in taking checkpointing decisions.

Figure 3: Example Choreography

VI. REFERENCES

[1] Vani Vathsala A, HrushikeshaMohanty, “Interaction patterns based

checkpointing of choreographed web services”. In the Proceedings

of the 6th International Workshop on Principles of Engineering

Service Oriented and Cloud Systems (PESOS 2014),Hyderabad,

India, pp 28–37,2014.

[2] Vani Vathsala A, HrushikeshaMohanty, “Time and cost aware

checkpointing of choreographed web services”, In the Proceedings

of the 11th International Conference on Distributed Computing and

Information Technology (ICDCIT 2015), India, pp 207–219,2015.

[3] Chtepen M, Dhoedt B, De Turck F, Demeester P, Claeys F,

Adaptive checkpointing in dynamic grids for uncertain job

durations. In the Proceedings of the 31st International Conference

on Information Technology Interfaces, (ICITI) pp 585–590, 2009.

[4] Nazir, Qureshi, and Manuel. Nazir B, Qureshi K, Manuel P, “
Adaptive checkpointing strategy to tolerate faults in economy based
grid”. The Journal of Supercomputing, Vol.50, Issue 1, pp 1–18,
2009

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 237 - 240

240

IJFRCSCE | January 2018, Available @ http://www.ijfrcsce.org

[5] HE Mansour, TDillon, “Dependability and rollback recovery for

composite web services”. IEEE Transactions on Services Computing

Vol 4, Issue 4,pp 328–339,2011.

[6] Chandy KM, Lamport L, “Distributed snapshots: determining global
states of distributed systems”. ACM Transactions on Computer Systems
Vol 3, Issue 1, pp 63–75, 1985.

[7] Vani Vathsala A, HrushikeshaMohanty, “A Survey on checkpointing
web services”. In the Proceedings of the 6th International Workshop
on Principles of Engineering Service Oriented and Cloud Systems
(PESOS 2014),Hyderabad, India, pp 11–17,2014.

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: 2454-4248
Volume: 4 Issue: 1 237 - 240

