Performance Analysis between OLSR and FSR Protocols under Black Hole Attack Using FPGA

Main Article Content

Vinay Bhatt, Dr. Sanjay Kumar

Abstract

Security is an important part of wireless ad hoc network or mobile ad hoc network. A mobile ad hoc network (MANET) is an infrastructure less category of wireless network. Routing protocols in Mobile ad hoc network is divided into three categories, Reactive (also known as on demand) routing protocol, Proactive (also known as table driven) routing protocol and Hybrid protocol. Security is an important part in MANET because when we send data source node to destination node in mobile ad hoc network, we want protection in path between source to destination and complete transfer data packet between source node to destination node. In this research paper we use two proactive routing protocol known as OLSR (Optimized Link state Routing) Protocol and FSR (Fisheye State Routing) Protocol. OLSR is a flat routing and Unipath protocol based on multipoint relay not multipath. FSR is a hierarchical routing and multipath protocol based on multiple paths. In this research work we check the performance of these two protocols under five different performance matrices known as Packet delivery ratio (PDR), Packet loss (PL), Average end to end delay (AEED), Normalized Routing load (NRL) and Throughput on black hole attack. Black hole attack is an active attack, in this attack attacker node absorbs the data packet and give the fake reply. In this research paper we analysis the performance two protocol one is unipath known as OLSR and second is Multipath known as FSR under Black hole Attack. The performance of FSR is better than OLSR, because OLSR is unipath and maximum data packet is absorbs in OLSR single path. FSR is better because FSR is Multipath and minimum data packet is absorbs in FSR multi path.

Article Details

How to Cite
, V. B. D. S. K. (2018). Performance Analysis between OLSR and FSR Protocols under Black Hole Attack Using FPGA. International Journal on Future Revolution in Computer Science &Amp; Communication Engineering, 4(4), 818–826. Retrieved from http://www.ijfrcsce.org/index.php/ijfrcsce/article/view/1619
Section
Articles